ICON Payload Integration TimeLapse

This time-lapse video shows the integration of instruments into the ICON payload at the Space Dynamics Laboratory in Logan, Utah. The video covers a 15-week period from mid-February, 2016 until the end of May, 2016. Occasional darkness indicates cleanliness inspections using a UV light, and the blue tower that is occasionally visible is the last tracker used for alignment measurements. The video begins with preparation of the Payload Interface Plate (PIP), with purge lines and the MIGHTI fiber optic assembly. The order of instrument integration is as follows: MIGHTI B, MIGHTI A, ICP-Echo, MIGHTI cal lamp, MIGHTI ebox, IVM A, EUV, FUV, IVM B, star tracker and antenna mast simulators, and ICP flight. The video ends with the payload moved from the handling cart to the shipping container base, ready for testing.

Making of ICON

Data coming back from orbit seemed to not make sense. The glow at the equator changed from place to place around the Earth in ways we didn’t expect. Now we are building the ICON mission, a satellite that will explore this region of the atmosphere, where Earth’s weather meets space weather…It really takes a huge number of people working together to make a space science mission.


Parker Solar Probe – Cool Power

The solar panels are shown here on this artist rendering of Parker Solar Probe; they are the black squares with gray rectangles on the center of the spacecraft. Credit: NASA/JHUAPL

As NASA’s Parker Solar Probe spacecraft begins its first historic encounter with the sun’s corona in late 2018—flying closer to our star than any other mission in history—a revolutionary cooling system will keep its solar arrays at peak performance, even in extremely hostile conditions.

Every instrument and system on board Parker Solar Probe (with the exception of four antennas and a special particle detector) will be hidden from the sun behind a breakthrough thermal protection system (TPS)—an eight-foot diameter shield that the spacecraft uses to defend itself against the intense heat and energy of our star.

Every system will be protected, that is, except for the two solar arrays that power the spacecraft. When the spacecraft is closest to the sun, the solar arrays will be receiving 25 times the solar energy they would while orbiting Earth, and the temperature on the TPS will reach more than 2,500°F (1,370°C). The cooling system will keep the arrays at a nominal temperature of 320°F (160°C) or below.

The complete article is found here.

1,000 Days in Orbit: MAVEN’s Top 10 Discoveries at Mars

This artist concept shows the MAVEN spacecraft and the limb of Mars.
Credits: NASA’s Goddard Space Flight Center

“MAVEN has made tremendous discoveries about the Mars upper atmosphere and how it interacts with the sun and the solar wind,” said Bruce Jakosky, MAVEN principal investigator from the University of Colorado, Boulder. “These are allowing us to understand not just the behavior of the atmosphere today, but how the atmosphere has changed through time.”

During its 1,000 days in orbit, MAVEN has made a multitude of exciting discoveries. Here is a countdown of the top 10 discoveries from the mission:

10. Imaging of the distribution of gaseous nitric oxide and ozone in the atmosphere shows complex behavior that was not expected, indicating that there are dynamical processes of exchange of gas between the lower and upper atmosphere that are not understood at present.

9. Some particles from the solar wind are able to penetrate unexpectedly deep into the upper atmosphere, rather than being diverted around the planet by the Martian ionosphere; this penetration is allowed by chemical reactions in the ionosphere that turn the charged particles of the solar wind into neutral atoms that are then able to penetrate deeply.

See the remaining eight discoveries here:

NuSTAR’s First Five Years in Space

This artist’s concept shows NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) spacecraft on orbit. Credit: NASA/JPL-Caltech

Five years ago, on June 13, 2012, Caltech’s Fiona Harrison, principal investigator of NASA’s NuSTAR mission, watched with her team as their black-hole-spying spacecraft was launched into space aboard a rocket strapped to the belly of an aircraft. The launch occurred over the Kwajalein Atoll in the Marshall Islands. Many members of the team anxiously followed the launch from the mission’s operations center at the University of California, Berkeley, anxious to see what NuSTAR would find.

Now, Harrison shares her take on five of the mission’s many iconic images and artist—ranging from our flaring sun to distant, buried black holes. NuSTAR is the first telescope capable of focusing high-energy X-rays—and it has taken the most detailed images of the sky in this energy regime to date.

Read the complete article and see the images.

Parker Solar Probe – Follow Up

The Parker Solar Probe, our first mission to touch the sun, was renamed on May 31st in honor of astrophysicist Eugene Parker. Here is a short video showing the mission and its objectives.

NASA Renames Solar Probe Mission to Honor Pioneering Physicist Eugene Parker

Illustration of the Parker Solar Probe spacecraft approaching the sun. Credit: NASA/JHUAPL

CHICAGO – NASA has renamed the Solar Probe Plus spacecraft – humanity’s first mission to a star, which will launch in 2018 – as the Parker Solar Probe in honor of astrophysicist Eugene Parker. The announcement was made at a ceremony at the University of Chicago, where Parker serves as the S. Chandrasekhar Distinguished Service Professor Emeritus, Department of Astronomy and Astrophysics.

In 1958, Parker—then a young professor at the university’s Enrico Fermi Institute—published an article in the Astrophysical Journal called “Dynamics of the interplanetary gas and magnetic fields.” Parker believed there was highly energized matter and radiation constantly escaping the sun, and that it affected the planets and space throughout our solar system.

This phenomenon, now known as the solar wind, has been proven to exist repeatedly through direct observation. Parker’s work forms the basis for much of our understanding about how stars interact with the worlds that orbit them.

Read the complete news release.