First evidence that water can be created on the lunar surface by Earth’s magnetosphere

Artist’s depiction of the Moon in the magnetosphere, with “Earth wind” made up of flowing oxygen ions (gray) and hydrogen ions (bright blue), which can react with the lunar surface to create water. The Moon spends >75% of its orbit in the solar wind (yellow), which is blocked by the magnetosphere the rest of the time. Credit: E. Masongsong, UCLA EPSS, NASA GSFC SVS.

Before the Apollo era, the moon was thought to be dry as a desert due to the extreme temperatures and harshness of the space environment. Many studies have since discovered lunar water: ice in shadowed polar craters, water bound in volcanic rocks, and unexpected rusty iron deposits in the lunar soil. Despite these findings, there is still no true confirmation of the extent or origin of lunar surface water.

The prevailing theory is that positively charged hydrogen ions propelled by the solar wind bombard the lunar surface and spontaneously react to make water (as hydroxyl (OH) and molecular (H2O)). However, a new multinational study published in Astrophysical Journal Letters proposes that solar wind may not be the only source of water-forming ions. The researchers show that particles from Earth can seed the moon with water, as well, implying that other planets could also contribute water to their satellites.

Read the complete article and how THEMIS/ARTEMIS satellite observations were used to profile the distinctive features of ions in the solar wind versus those within the magnetosphere Earth wind.