Anderson Post-Doc Travel Award Donation


AndersonKinsey Anderson Post-Doc Travel Award is a program for providing travel funds for post-doctoral researchers at the Space Sciences Laboratory at the University of California, Berkeley has been established in honor of Professor Kinsey Anderson.

Professor Anderson, an early director and guiding figure behind the success of the Space Sciences Laboratory is pictured here.

Please consider making a donation to the fund.

STEREO Helps Us Understand How the Sun Erupts

Launched ten years ago, on Oct. 25, 2006, the twin spacecraft of NASA’s STEREO mission – short for Solar and Terrestrial Relations Observatory – have given us unprecedented views of the sun, including the first-ever simultaneous view of the entire star at once. This kind of comprehensive data is key to understanding how the sun erupts with things like coronal mass ejections and energetic particles, as well as how those events move through space, sometimes impacting Earth and other worlds. Ten years ago, the twin STEREO spacecraft joined a fleet of NASA spacecraft monitoring the sun and its influence on Earth and space – and they provided a new and unique perspective.

The two STEREO observatories, called STEREO-A and STEREO-B – for Ahead and Behind, respectively – were sent out from Earth in opposite directions. Using gravitational assists from both the moon and Earth, the STEREO spacecraft were accelerated to Earth-escape velocities. STEREO-A was inserted into an orbit slightly smaller, and therefore faster, than Earth’s. For STEREO-B, the reverse happened: It was nudged into an orbit slightly larger than Earth’s so that it traveled around the sun more slowly, falling increasingly behind the Earth. As the spacecraft slowly fanned out away from the centerline between Earth and the sun – where every other sun-watching spacecraft is located – they revealed more and more new information about our closest star.

For STEREO’s 10th anniversary, Deputy Project Scientist Terry Kucera gives an overview of the missions top 5 success stories.

Credit: NASA’s Goddard Space flight Center/Genna Duberstein

Music credit: Life Choices by Eric Chevalier

Read more:…

This video is public domain and along with other supporting visualizations can be downloaded from the Scientific Visualization Studio at:

If you liked this video, subscribe to the NASA Goddard YouTube channel:

Or subscribe to NASA’s Goddard Shorts HD Podcast:…

Citizen Science, Space Sciences and Alzheimer’s research meet

A new online science game allows the general public to directly contribute to Alzheimer’s disease research and help scientists search for a cure.

A screenshot of the Stall Catchers game.

A screenshot of the Stall Catchers game.

The game, called Stall Catchers, was developed by the Human Computation Institute, in collaboration with UC Berkeley and other institutions, as part of the EyesOnALZ citizen science project. Stall Catchers will allow participants to look at movies of real blood vessels in mouse brains and search for clogged capillaries, or stalls, where blood is no longer flowing, Previous research suggests that capillary stalls could be a key culprit in Alzheimer’s disease.

The citizen science approach for Stall Catchers was developed by physicist Andrew Westphal, a senior fellow at the UC Berkeley Space Sciences Laboratory. The approach was first used in a project called Stardust@home, developed here at Space Sciences Lab, in which more than 30,000 amateur scientists have carried out more than 100 million searches to identify interstellar dust in collectors returned by the NASA Stardust comet sampling mission. Stardust@home led to the discovery of seven particles of likely interstellar origin, reported in the journal Science in 2014.

You can read more about Stall Catchers in a Berkeley News article.

NASA’s Van Allen Probes Spot Electron Rainfall in Atmosphere

Our planet is nestled in the center of two doughnut-shaped regions of powerful, dynamic radiation: the Van Allen belts, where high-energy particles are trapped by Earth’s magnetic field. Depending on incoming radiation from the sun, they can gain energetic particles. On the other hand, the belts can lose energized particles too.

This video illustrates the complexity of Earth’s magnetic environment, from the radiation belts encircling Earth to the magnetic field lines, depicted as blue ribbons, extending far out into space. During a drop-out, ultra-relativistic electrons stream down along powerful electromagnetic waves, as if they are raining into the atmosphere.
Credits: NASA Goddard/Joy Ng/Martin Rother/GFZ-Potsdam

We are familiar with rapid changes in weather, and the radiation belts can experience these too – particles can be depleted by a thousand-fold in mere hours. These dramatic loss events are called drop-outs, and they can happen when intense bouts of solar radiation disturb Earth’s magnetic environment. There have been many theories on how this happens, but scientists have not had the data to pinpoint which one is correct.

However, on Jan. 17, 2013, NASA’s Van Allen Probes were in just the right position to watch a drop-out in progress and resolve a long-standing question as to how the lower region of the belts close to Earth loses high-energy electrons – known as ultra-relativistic electrons for their near-light speeds. During a drop-out, a certain class of powerful electromagnetic waves in the radiation belts can scatter ultra-relativistic electrons. The electrons stream down along these waves, as if they are raining into the atmosphere. A team led by Yuri Shprits of University of California in Los Angeles published a paper summarizing these findings in Nature Communications on Sept. 28, 2016.

Such information helps illustrate the complexity of Earth’s magnetic surroundings.  Understanding changes within the belts is crucial for protecting the satellites and astronauts travelling through this sometimes harsh space environment.

Related Links

ICON Payload Integration Time-Lapse

A 15-Week Time-Lapse in 2 Minutes

This time-lapse video shows the integration of instruments into the ICON payload at the Space Dynamics Laboratory in Logan, Utah. The video covers a 15-week period from mid-February, 2016 until the end of May, 2016. Occasional darkness indicates cleanliness inspections using a UV light, and the blue tower that is occasionally visible is the last tracker used for alignment measurements. The video begins with preparation of the Payload Interface Plate (PIP), with purge lines and the MIGHTI fiber optic assembly. The order of instrument integration is as follows: MIGHTI B, MIGHTI A, ICP-Echo, MIGHTI cal lamp, MIGHTI ebox, IVM A, EUV, FUV, IVM B, star tracker and antenna mast simulators, and ICP flight. The video ends with the payload moved from the handling cart to the shipping container base, ready for testing.  Read more about ICON.

NASA’s Deep Space Network, or DSN, “established a lock on the STEREO-B

Credit: NASA

Credit: NASA

NASA re-established contact with a wayward sun-watching science satellite Sunday nearly two years after the spacecraft suddenly dropped off line during a test, the agency said in a statement Monday.

NASA’s Deep Space Network, or DSN, “established a lock on the STEREO-B (spacecraft’s) downlink carrier at 6:27 p.m. EDT,” NASA said in a statement. “The downlink signal was monitored by the Mission Operations team over several hours to characterize the attitude of the spacecraft and then transmitter high voltage was powered down to save battery power.

“The STEREO Missions Operations team plans further recovery processes to assess observatory health, re-establish attitude control and evaluate all subsystems and instruments.”

The complete article courtesy of SpaceFlight Now:

NuSTAR Principal Investigator Honored for Research


Artists Concept of the NuSTAR Satellite

Fiona Harrison, principal investigator of NASA’s NuSTAR (Nuclear Spectroscopic Telescope Array) mission, has been selected to receive the 2016 Massey Award, given by the Committee on Space Research (COSPAR).

The Massey Award honors “outstanding contributions to the development of space research in which a leadership role is of particular importance” and honors the memory of Sir Harrie Massey.

“It has been great to work with such a strong and talented team on NuSTAR,” said Harrison, a professor of astronomy at Caltech. “The whole team deserves credit in NuSTAR’s success.”

NuSTAR launched in June 2012, opening a new window to the universe as the first focusing telescope to operate in a high-frequency band of X-rays called hard X-rays.

Read the complete article: courtesy of Elizabeth Landau, Jet Propulsion Lab

NASA’s getting ready to plunge a spacecraft deeper into the sun than ever before


NASA is one step closer in its mission to “touch” the sun. Last week, it announced that the Solar Probe Plus mission had passed a huge milestone, keeping it on track for a 2018 launch.

The Solar Probe Plus mission will start with the launch of a spaceship that will complete 24 orbits of the sun. Then, after completing seven flybys of Venus to get closer and closer, the spacecraft will dive into the corona, or the outer atmosphere of the sun.

The three closest orbits will be just under 4 million miles from the Sun’s surface — that’s seven times closer than any spacecraft has ever come to our neighborhood fireball.

The complete article, courtesy of Ali Sundermier, provided by Business Insider

MAVEN begins Deep Dip campaign #6

The MAVEN navigation team executed maneuvers on Tuesday and Wednesday of this week that provided a total delta-V (∆V) of 4.0 m/sec. to the spacecraft and lowered the periapsis (lowest altitude) by a total of 24.5 km to 120.5 km above the ‪#‎Martian‬ surface.

This Deep Dip campaign—the 6th of the mission to-date—is located in shadow near midnight on the red planet, and spans both sides of ‪#‎Mars‬’ equator.

(Video credit: NASA/GSFC)