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It is well known [1] that in a flat universe, the radial and transverse comoving distances at 
redshift z are the same and are given by the expression  
 

∫
++Ω+

=
z

m yyy
dyzDC

0 32 )33(1
)(     (1) 

 
where mΩ is the mass fraction, currently believed to lie in the interval 0.25 < mΩ < 0.30. 
.  
Comoving distance is the basis of the geometrical inverse square law, and of the other 
measures of cosmological distance, namely the angular diameter distance 
 
DA(z) = DC(z)/(1+z)      (2) 
 
and the luminosity distance  
 
DL(z) = (1+z)*DC(z).      (3) 
 
For many purposes one needs to evaluate DC(z) using a straightforward method that 
avoids integration.  Examples are spreadsheet estimates of cosmological fluxes and 
angular sizes, useful in planning and comparing potential cosmology experiments. As it 
turns out, there is no convenient analytical expression for the integral yielding DC(z).  
However there are a variety of analytical expressions [2],[3] that closely approximate the 
DL(z) or DC(z) function, and here I present two such functions.  
 
One closed-form approximation DCapprox( )  that I recommend is 
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For 0<z<2.5 and 0.26< mΩ <0.28, the coefficients AA and BB that best fit the integral are 
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For these choices of coefficients, the RMS error is 0.002 when 0<z<2.5. 



 
In Fig 1 below, I show a plot of DL(z), DC(z), and DA(z) top to bottom in dimensionless 
units. In blue, I plot the exact integrals DC(z) etc;  in red I plot the DCapprox(z) variants, 
for choices of mΩ =0.20, 0.25, 0.30, and 0.35 moving downward within each group. 
 

 
Fig 1.  Top group: DL(z) for mΩ =0.20, 0.25, 0.30, and 0.35.  Middle group: DC(z) for 
the same mΩ .  Bottom group:  DA(z) for the same mΩ .  Within each group the blue 
curves are the precise integrals (hard to see! sorry) and the red curves overlying them are 
the approximate forms based on my DCapprox(z).  The RMS error in the approximation 
is 0.002 for this range of parameters.  
 
 



 
 
 
In other situations you may need a closed form approximation to DC which is valid over 
the entire range of redshift, 0<z<infinity.  Since DC reaches an asymptotic value at large 
redshift that depends on mΩ (for example it is 3.45 for mΩ =0.27) it is important that the 
higher exponent of z within the approximation square root remain exactly 2.0.  However 
the middle term in the square root can be adjusted both in coefficient and exponent for 
best fit over the complete range in redshift.  When this is done for mΩ =0.27, the resulting 
approximation becomes 
 

23179.1 0854.04704.01
)27.0,(

zz
zzDCapprox m

⋅+⋅+
==Ω   (6) 

 
Here the RMS error over a set of 80 logarithmically spaced z-values 0.001 to 1E5 is 1%. 
 
 
For most purposes you will want to convert these dimensionless distances to linear units. 
Multiply them by the Hubble distance DH = 3Gpc/h = 4.29Gpc = 1.325x1026m when H0 = 
70km/s.Mpc and h = H0/100.  Once you have put the distance measures into linear units, 
you may apply the usual formulas:  for example, power flux = Luminosity/4πDL

2. 
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A note added on Distance Modulus, ABmag, and STmag 
 
Bolometric magnitudes include the radiant flux at all frequencies and wavelengths. The 
distance modulus (DM) is a logarithmic measure of the ratio of power flux of an object at 
cosmological redshift to its flux at a standard 10 pc distance.  Thus for mbol (observed) 
and Mbol (absolute, i.e. at 10 pc distance), both being measures of power flux, 
 
mbol = Mbol + DM       (7) 
 
where DM = distance modulus = 5 log(DL/10pc) = 5 log(DC/10pc) + 5 log(1+z) where DL 
and DC have dimensions of length.  Notice how the inverse square law appears in terms 
of DM:  DL

2 includes the inverse square law through DC
2 (the geometric part) and also 

has two powers of (1+z), one for the time dilation and the other for the energy shift. 
If, instead of power flux, we were interested in time-integrated energy in a pulse (say a 
gamma ray event), the distance relation would would contain the geometry and the 
energy shift but not the time dilation: ebol=Ebol + 5 log(DC/10pc) + 2.5 log(1+z).  
Or if we were interested in total steady photon flux over all wavelengths, the distance 
relation would contain the geometry and the time dilation but not the energy shift factor, 
so that  rbol = Rbol + 5 log(DC/10pc) + 2.5 log(1+z). And if, instead of photon rate, we 
were interested in the time-integrated number of photons in a gamma ray burst, the time 
dilation factor would vanish as well, resulting in an even simpler expression    nbol = Nbol 
+ 5 log (DC/10pc)   having no (1+z) factors.  
 
Anyway if we substitute the dimensionless DC approximation from eqn (4), suitably 
multiplied by DH=3/h Gpc, and take the logarithms, we get… 
 
DM = 40 + 5 log(3/h) + 5 log[z/√(1+az+bz2)] + 5 log (1+z).  (8) 
 
 
When considering continuum fluxes per band or per frequency or wavelength interval, a 
K-correction must be introduced [1]: 
 
m = M + DM + K.       (9) 
 
K is a magnitude error that would occur if the sizes and shapes of the emitting band 
(defining M) and the observing band (defining m) fail to obey λobs = (1+z)·λem.  If they 
were scaled appropriately, or were bolometric, with all wavelengths scaled by (1+z), then 
K=0.  However, monochromatic fluxes (per Hz or per Angstrom) have no such scaling 
and their compression towards low frequencies (and dilution towards long wavelengths) 
appears explicitly as a system-dependent K-correction: 
 
ABmag[νobs]  = ABmag[(1+z)νobs, 10pc] + DM – 2.5 log(1+z) (10) 
STmag[λobs]   = STmag[λobs/(1+z), 10pc] + DM + 2.5 log(1+z). (11) 
 



Evaluating the comoving distance numerically 
Note added Sept 2010,  M.Lampton 

 
I am sometimes asked how to evaluate the comoving distance for a given cosmology.  It 
is not widely appreciated that this potentially improper integral, shown above as equation 
(1), requires two changes of variable to make it generally tractable. 
 
The first change of variable is well known to cosmologists.  Define the scale factor “a” 
 

a = 1/(1+z)     (12) 
 

which maps 0<z<∞ onto 0<a<1.  This transformation moves the impropriety from the 
horizontal extension to infinity to a vertical extension at a=0.   With a*=1/(1+z*): 
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Ordinary numerical integration tools (trapezoid, Simpson, Romberg) assume that the 
integrand and its derivatives are well behaved.  They perform poorly when the integrand 
or its derivatives are infinite anywhere in the interval or at its endpoints.    
 
The second change of variable is well known to numerical people (see Press et al, 4.4.5). 
The divergence of the integrand in equation (13) is a simple inverse square root, so define 
a=t² and rewrite the integral in terms of t: 
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In this form, the divergence of the integrand at the origin has been eliminated in favor of 
a nonlinear lower limit to the integral.  The integrand is now well behaved even at a=0, 
and can be evaluated by ordinary numerical (trapezoid, Simpson, or Romberg) method.  
 
Carrying out the first transformation, but not the second, is the reason that Ned Wright’s 
very useful online Cosmology Calculator comes out a bit short when evaluating extreme 
distances, such as asking it the distance to the Big Bang.  
 
For reference, I include a list of values of the dimensionless distance to the Big Bang for 
five values of the current mass fraction Ωm evaluated using (14) and a Simpson rule. 

 
OmegaM=    0.100000:   DC(0)=    5.108744 
OmegaM=    0.200000:   DC(0)=    3.890726 
OmegaM=    0.300000:   DC(0)=    3.305076 
OmegaM=    0.400000:   DC(0)=    2.938520 
OmegaM=    0.500000:   DC(0)=    2.679595 

 
--end-- 


