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We describe a time-to-digital converter able to measure intervals as great as 100 ns with a resolution 
of 4 ps rms. It achieves this large dynamic range by simultaneously sampling four sinusoidal wave 
forms (sine and cosine waves at 200 and 6.25 MHz) derived from a single quartz oscillator. 
Twelve-bit analog-to-digital conversion of the 200 MHz waves yields the high time resolution. 
Eight-bit conversion of the 6.25 MHz samples removes the cycle ambiguity of the 200 MHz data. 
The digital words are pipelined in a fully parallel data flow architecture. A first-in first-out stage in 
the pipeline derandomizes the random event arrival times. A subsequent stage in the pipeline uses 
an arctangent function to convert the sine and cosine pairs into linearized measures of event time. 
These are subtracted to yield start-stop. time interval sizes for individual photoevents. The minimum 
start-stop interval is 50 ns,, set primarily by the cycle time. Because the same processing is 
employed for. the start and stop events, a large class of potential error and drift phenomena are 
eliminated. The digitizer provides an accurate way to decode the outputs of delay line detectors, 
offering high event throughput and extremely good long-term timing accuracy. As a side benefit, the 
pipeline data flow architecture permits simple breadboarding and low-throughput testing of the 
system stages with the arctangent work implemented in a personal computer. This arrangement is 
also very convenient for logging diagnostic evaluation data. The same front-end and data flow 
architecture is directly applicable to very high-speed applications where the event processing is 
implemented in a digital signal processor. 

I. INTRODUCTION 

In recent years, position sensitive detectors based on de- 
lay lines have supplanted or replaced alternative event read- 
out methods.’ In a delay line detector, each detected event 
produces a start pulse and a stop pulse. The time interval 
separating these pulses encodes the event position. Present 
trends in delay line applications involve images in both one 
and two dimensions that have a large ratio of size to resolu- 
tion. This dynamic range must be accommodated while re- 
taining full accuracy and good long-term image mapping sta- 
bility. 

To decode time intervals generated by such a detector, a 
timing circuit is required whose time resolution. must not 
degrade the spatial resolution of the detector and whose 
maximum time interval capability must be sufficient to ac- 
commodate the full image size of the detector. This digitizer 
must be extremely linear so that the mapping of event posi- 
tion into position code can be reliably determined for each 
event. Moreover, the conversion slope and offset must re- 
main highly stable over time and over operating conditions 
so that the detector calibration remains effective over the 
long term. Finally, in some applications it is important to 
accommodate high count rates. 

Early time-to-digital converters (TDCsj used an analog 
ramp time-to-amplitude converter”-7 followed by an analog- 
to-digital converter (ADC) or pulse-height analyzer. Such a 
combination is inherently limited in accuracy by its two ana- 
log processing stages and by the recycling time of the ramp 
circuitry; it also needs frequent recalibration against a pri- 
mary quartz oscillator time base to determine its conversion 
slope. Alternative approaches are based on fast digital logic 
and include the direct digital counting of clock pulses in 

various vernier and coarse/fine interpolation arrangements.8?y 
A third technique, by Berry,‘” uses sine and cosine waves for 
the fine time interpolation in an otherwise basically digital 
system. 

Our approach, the dual arctangent TDC, differs in that it 
eliminates the high-speed cycle counting and its correction 
logic. Instead, we generate four spectrally pure, continuous- 
encoding wave forms from a single quartz oscillator at 200 
MHz. The oscillator output is filtered and delayed to produce 
sine and cosine waves at 200 MHz. It is also divided by 32, 
and filtered and delayed to give continuous sine and cosine 
waves at 6.25 MHz. Each timing event triggers the immedi- 
ate digitization of these four wave forms. The digitized data 
are placed into a first-in first-out (FIFO) buffer pipeline chip 
that is accessible by a computer. From the four samples we 
reconstruct the event time downstream using only software. 

This pipeline approach offers a number of practical ben- 
efits: complete immunity to phase shifts and timing skew in 
the front end, an absolute minimum of high-speed electron- 
ics, and easy flexible software implementation of the pipeline 
stages for low-speed applications and development diagnos- 
tics. 

The leading ,$ontemporary architecture for high-speed 
signal work centers on the use of a dedicated digital signal 
processor (DSP): a microprocessor whose instruction codes 
and memory layout facilitate rapid repetitive math operations 
on pipelined data. Our TDC pipeline interfaces conveniently 
to such an architecture, and indeed the processing steps that 
convert the ADC samples into time intervals are likely to be 
implemented using DSPs in forthcoming flight applications. 

The dual arctangent time-to-digital converter is capable 
of achieving a very large dynamic range, resolving a few 
picoseconds while accommodating time intervals to beyond 
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FIG. 1. Block diagram of the TDC. The master 200 MHz clock drives a11 
the sinusoids. Each input event triggers the sample/holds and the g-bit 
ADCs. The data flow pipeline begins with the FIFO buffer and includes the 
two arctangent functions and an event pair time code difference block. 

100 ns. (By adding a slow cycle clock, the maximum timing 
interval could be extended arbitrarily. j Unlike ramp convert- 
ers, the arctangent converter does not have distinct states in 
which it is accumulating time or is paused. Its sine, waves 
provide a continuous measure of time and need never be 
reset. The same circuitry is triggered once for the start event 
and again for the stop event. The time interval is then evalu-. 
ated by subtracting the two event times of these identical 
logic transitions, thereby eliminating a major source of mea- 
surement error. The arctangent function is inherently ratio- 
metric, so that shifts in oscillator amplitude, electronic gain, 
and ADC scale factors do not appear as output terms. 
Second-order timing errors are produced by dc shifts, but are 
removable by a linear correction based on diagnostics de- 
rived from the native random-event train. The TDC stability 
is largely determined by the phase stability of a single 
quartz-crystal oscillator whose drift can be tightly controlled. 
Finally, the electrical power consumption is low enough (10 
W in its present implementation) to permit the use of this 
TDC on-board spacecraft for photon-counting space as- 
tronomy applications with microchannel detectors. The ob- 
jective of the work described here is to quantify the sources 
of actual timing errors for the dual arctangent TDC. 

II. OVERVIEW 

In Fig. 1, we present a block diagram of the TDC. Here, 
a single quartz-crystal oscillator runs continually. Its output 
is bandpass filtered and divided into two branches, one of 
which is delayed by 1.25 ns to give a 90” phase lag. These 
two signals are the cosine and sine waves of our 200 MHz 
timing channel. The clock output is also presented to a digi- 
tal counter that reduces the frequency by exactly a factor of 
32. (An alternative implementation would use a 6.25 MHz 

oscillator, whose 32nd harmonic would be generated and fil- 
tered for use in the 200 MHz channel.) The 6.25 MHz wave 
form is bandpass filtered to remove harmonics and subhar- 
monies and split into two signals having a 90” phase differ- 
ence, establishing the low-frequency cosine and sine pair. 

We use a pair of fast analog sample/hold (s/h) circuits to 
acquire the 200 MHz cosine and sine samples, stabilizing 
them for 30 ns while two 12-bit ADCs perform the conver- 
sion. At the same time, a dual 8-bit ADC samples and digi- 
tizes the 6.25 MHz wave pair. 

Our TDC makes use of a digital data pipeline to convert 
the raw ADC samples into time intervals. This pipeline con- 
tains stages that detect and eliminate the principal errors ac- 
companying the sampled sine waves: dc offset and drift, 
gain, oscillator amplitude, reference voltage error, and phase 
drift. This is accomplished without need for artificially in- 
jected test pulses, using instead only the native events nor- 
mally processed by the system. Such an arrangement makes 
the TDC highly robust against front-end analog drift, provid- 
ing a performance that closely approaches the quartz oscilla- 
tor accuracy and fundamental timing jitter of the trigger 
wave forms and the sampling process. 

Our algorithm for conversion of wave phase into time 
interval is robust against variations in the relationship be- 
tween the high-frequency wave pair and the low-frequency 
pair. This feature makes our TDC tolerant of differing or 
varying delays in the slow and fast filter, sampler, and ADC. 
Precision delay matching or compensation of the slow and 
fast channels is not required. 

The timing error distribution of our TDC has several 
contributors. First, each cascaded ECL gate in the START 
and STOP trigger logic contributes about 1 ps rms timing 
uncertainty; our circuit has three consecutive gates in each 
path, giving 1.7 ps rms. Second, the Analog Devices AD9100 
s/h that we adopted has a quoted timing jitter of 1 ps rms. 
Third, quartz oscillators have short-term timing errors nor- 
mally described by the “floor” or level part of the phase- 
noise sideband spectrum. Our oscillator has not been spec- 
trum analyzed, but a typical quartz noise floor is -140 
dBc/Hz or 0.7 mrad in a 50 MHz clock bandwidth. Atop a 
200 MHz carrier this phase noise is 0.56 ps rms. Finally, the 
12-bit ADC quantization is 0.4 ps per least significant bit or 
about 0.2 ps rms. Combining these error terms for START 
and STOP, we expect (and achieve) a 4 ps rms interval tim- 
ing uncertainty for the system. Our TDC is well over- 
sampled: Its digitization errors are far smaller than the other 
error magnitudes. This oversampling makes our TDC perfor- 
mance robust against common ADC defects such as missing 
codes, odd-even effects, and bin-to-bin variations in conver- 
sion slope. 

Our TDC implementation does? however, pose signifi- 
cant accuracy requirements on the high-frequency front-end 
circuit components. The sampled fast cosine and sine wave 
forms must be free of harmonic distortion for, the recovered 
arctangents to be linear in time. We achieve harmonic distor- 
tion figures of a few percent by filtering the oscillator wave 
form and operating the s/h circuit at a low signal level, far 
below its slew-rate limit. The remaining distortion is periodic 
and correctable, as described below. 
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TABLE I. Major circuit elements. 

Item Description 

200 MHz quartz oscillator Standard crystal EllOO-AAC 
200 MHz bandbass filter 2XPLP-200 and 2XPHP200 
Input timing logic MECL 10 KH gates 
1.25 ns delay 25 cm semirigid coax 
200 MHz sample/hold Analog Devices AD9100 
Buffer amplifier Comlinear CLC401 at X20 
I?-bit ADC SPT 7922 ‘ITL, 30 ns 
Divide by 32 Plessey SP8743B and MECL 
6.25 MHz filter PLP-10.7 
40 ns delay line Allen Avionics LC040ZSOA 
Dual &bit ADC Analog Devices AD9058 
FIFO six g-bit IDT 7203820 

III. IMPLEMENTATION DETAILS 

Owing to the rapid improvement rate of electronics ac- 
curacy, power consumption, and speed, details of a given 
implementation are likely to be obsolete before a technical 
paper such as this can reach its audience. Nonetheless, we 
offer a snapshot of our current state of TDC development by 
presenting descriptions of the elements of the system whose 
performance we report here. Table 1 lists these elements and 
how they were implemented. 

One design consideration is the fact that the high-speed 
s/h chip has appreciable nonlinearity if employed with a full 
scale (2 vpp) sine wave at 200 MHz. On the other hand, it 
has a very low noise level, amounting to less than 100 
/JV rms. It is thus best used at a low level of sine wave drive; 
we employ CO.2 vpp. We employ a buffer amplifier with a 
gain of 20 to boost the wave sample to span the 4 vpp work- 
ing range of the 12-bit ADC chip. The s/h chip also exhibits 
about -40 dB of unwanted sine wave feedthrough at 200 
MHz, which if applied to the 1Zbit ADC might cause prob- 
lems, even though the ADC has its own internal s/h circuit. 
We limit the bandwidth of the buffer amplifier to 50 MHz 
with a fairly sharp cutoff to attenuate rather than boost the 
200 MHz hold-mode feedthrough. The buffer amplifier also 
restricts the noise bandwidth of the sampler to about 50 
MHz. The combined noise level of the s/h and the amplifier 
is less than 1 mV rms (1 least significant bit) at the input to 
the ADC. 

IV. ARCTANGENT TIME COMPUTATION 

The TDC technique presented here requires the conver- 
sion of the cosine and sine samples to phase arguments at 
two places: The 200 MHz pair needs to be converted with 
high resolution, while the 6.25 MHz pair needs only enough 
resolution to resolve the 200 MHz cycle count. We refer to 
this conversion step as the arctangent stage. Then, we com- 
bine the coarse and &ne phases to yield a complete clock 
time reading for START, and another for STOP. Subse- 
quently, we subtract these two readings to estimate the time 
interval. 

Depending on implementation details these computa- 
tional steps may be carried out in a general-purpose micro- 
processor, in a dedicated digital signal processor, or in a 
dedicated wired-logic system. In this section we describe a 

software approach in which a 64-wire parallel direct memory 
access communications channel inserts the raw ADC infor- 
mation directly from the FIFO into a block of computer 
memory and sets a flag. The computations are then done 
using software, 

The arctangent function of two arguments is a common 
library function in high-level computer languages; for ex- 
ample, it is an essential part of the algorithm that converts a 
Cartesian coordinate pair into a polar coordinate pair. Let the 
function arctan(y,x) represent such a function expressed in 
cycles (the trigonometric arctangent divided by 271.). Let X 
and Y be the fine high-frequency cosine and sine samples, 
and let U and V represent the coarse wave samples. Define 

F = arctan( Y,X) (1) 

and 

C = arctan( V, U) , (2) 

where F and C are expressed in cycles so that O<F<l and 
O<C<l. These fine and coarse phases must be combined to 
create an event-time estimate that is continuous and mono- 
tonic. Because the coarse phase is not precisely coordinated 
with the fine phase, the fine cycle count must be driven by 
the passage of the fine phase through zero, not simply by the 
advance of the coarse phase. In a clock analogy, hours start 
when the minute hand passes 0, not when the hour hand 
crosses an hour mark. 

We adopt the time formula 

T=F+int(32*C-FfK), (3) 

where T is expressed in cycles of the fast clock. In this 
formula, the int( ) function returns the integer part of its 
argument; here, it provides the added number of cycles of 
coarse time. The argument of the int( ) function varies only 
slightly while F increases, since the 32*C balances the -F 
term on the average. However, the abrupt reduction of F, 
unaccompanied by any significant change in C, is what in- 
crements the int( ) function. The constant K centers the tran- 
sition in the fine range to provide a generous margin against 
phase drifts between the slow and fast timing channels. K 
can be determined in software. K is approximately equal to 
0.5 in our circuit. 

To obtain the time interval separating the START and 
STOP events, the start time must be subtracted from the stop 
time using modulo arithmetic. If the difference is negative, a 
full coarse period (T=32, which is 160 ns in our system) has 
to be added to the result. 

Vm PIPELINE DATA DIAGNOSTICS AND MANAGEMENT 

Because the event data are processed sequentially by 
software, it is convenient to implement data diagnostics at 
various points in the processing flow, both before and after 
the arctangent conversion of raw ADC data into finished 
event interval timings. It has also proven instructive to accu- 
mulate diagnostic histograms of raw and processed data val- 
ues generated by random and periodic event trains. Some of 
these results are presented in the Sec. VI below. 

A key requirement of the TDC described here is that the 
arctangent function used to decode the fine cosine and,sine 
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samples must remain centered on the zero voltage points of 
the sinusoids. Drift in the amplitudes of the sinusoids, or in 
the ADC reference voltages, is cancelled by the arctangent 
function, but drift in the zero points of the s/h or ADC units 
will directly impact the precision with which the derived 
time codes are constructed. 

To eliminate zero-point drift, our pipeline includes a pre- 
liminary stage that monitors and corrects for any shift in the 
range of ADC codes. Because the codes are triggered by 
events that are unsynchronized with the TDC clock, the 
event codes are essentially random. Averaging the X codes to 
ascertain a zero point accurate to 1 part in 4000 would re- 
quire millions of events. Instead, we use software peak de- 
tectors that sense the positive and negative extreme values of 
the X and Y that are found in the pipeline. The method 
makes use of the fact that random samples of a noiseless 
clock wave form give a distribution with a low central den- 
sity but a very high density at the extremes: A useful fraction 
of the events lies in the extreme bins. For example, if a 
noiseless encoding circle has a diameter of 4000 bins, about 
1% of all events lie near bin 0 and another 1% lie near bin 
3999. Consequently, in a sequence of 500 random event tim- 
ings (250 start-stop pairs), five extreme-bin events of each 
kind are expected. The probability of having no samples rep- 
resenting the upper extreme bin in such a sequence is 
exp(-5): less than 1%. The effect of a few bins of radial 
noise in the encoding oval is a slight’increase in the jitter of 
the amplitude determination. 

We use a software peak detector to track the actual 
working values of the extreme bins in the pipeline data flow 
and to linearly remap the raw data to enforce a uniform data 
range and zero point before the arctangent function is called. 
Such a procedure uses a register for each of the positive and 
negative peak estimates. The procedure compares each 
sample with the current peak estimate and modifies the cur- 
rent estimate depending on the result of the comparison. Two 
peak detector routines have been employed: 

procedure digitalpeak(integer sample, 
peak) ; 

if (sample>=peak) 
then begin 

peak:=sample; 
count:=O; 
end 

else begin 
count:=(count+l) mod 1000; 
if (count=O) 

then peak:=peak-1; 
end: 

procedure analogpeak(integer sample, 
real peak); 

if (sample>=peak) 
then peak:=peak+O.l 
else peak:=peak-0.001; 

In either of the above two routines, the current peak 
estimate is adjusted by the stream variable “sample” and is 
available as a continuously running diagnostic for logging 

and data resealing. The underlying idea is to give the esti- 
mate a rapid upward correction rate for samples that exceed 
the estimate and a slow downward correction rate for the vast 
majority of samples that are less than the estimate. The 
“analogpeak” routine above has a 1OO:l rate ratio, and there- 
fore adjusts toward the 99th percentile point of the data dis- 
tribution. It has the feature of continually dithering its esti- 
mate by small amounts, which is beneficial in eliminating the 
small irregular variations in phase probability arising from 
the “orchard effect” explained below. It is also desirably 
robust against occasional out-of-range samples. 

We use the positive and negative peak values of the sine 
and cosine wave samples +X, -X, +Y, and -Y to remap 
the raw ADC data to a unit-radius encoding circle centered 
on zero: 

2x- ‘50s - Xneg x= xpos-Keg 
and 

(4) 

2y- ypos- yneg 
y= TI v 3 (5) 

= pas- 1 neg 
where XpoS refers to the current positive peak of X, etc. 

We use the peak values of Xf Y and -X- Y to deter- 
mine the length of the positive-slope diagonal of the encod- 
ing oval, and X-Y and -X+ Y to determine the length of 
its orthogonal diagonal. Comparing these we obtain a mea- 
sure of the ellipticity of the encoding oval. Let pp( ) be the 
peak-to-peak operator. If the encoding phase shift is 90” plus 
some small additional angle A (radians), the diagonals will 
be slightly unequal, to first order given by 

Pdx- Y) .-. 
pp(x+Yj = l +A- 

Given a running estimate of the encoding phase shift, 
subsequent samples of X and Y can be corrected for this 
phase shift, thereby circularizing the encoding .oval. To first 
order this can be done using the angle A to introduce cross 
terms: 

x=x+ Y*‘i 

and 

v=v+x*;. 

These cross terms have the effect of moving each (X,Y) pair 
from the observed encoding oval to an idealized encoding 
circle on which the ideal decoding function is the exact arct- 
angent. 

In this way pipeline data monitors can make a TDC sys- 
tem robust against electrical drift of its front end: Variations 
in ADC slope, offset, and phase angle are continually re- 
moved by pipeline processing stages. At the same time, di- 
agnostic monitor variables are continually available and can 
be made part of the data collection stream. 

VI. SYSTEM EVALUATION 
The TDC described above -was built on a four-layer 

board. The pipeline data buffer was an FIFO memory chip, 
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FIG. 2. ‘ILvo-dimensional histogram of fine cosine and sine pairs, binned 
onto a coarse 256X256 grid. The trajectory is circular to about 1%. The bin 
count irregularities are not caused by the TDC; they arise from the varying 
degree of coverage of the trajectory by the checkerboard. 

type 7203820 which accumulates 1024 timings at its half- 
full point. For evaluation purposes, we implemented the re- 
mainder of the data pipeline using a direct transfer to an IBM 
PC in which a variety of data processing stages were run 
(written entirely in BASIC). Single events and event pairs 
were created using a conventional quartz time base and a 
delay cable. 

Our first set of tests explored the distributions of digital 
codes that the ADCs generated. These tests allowed us to set 
the sinusoid amplitudes to best span the ADC input voltage 
ranges. Histograms of each ADC output were prepared: each 
shows the counting distribution that is expected from a 
sampled sinusoid. Bin-to-bin count variations on the order of 
20% were observed, and one ADC had missing output codes 
at some major bit transitions. This performance is typical of 
contemporary high-speed ADCs. 

In our second set of tests we examined the two- 
dimensional distribution of the raw fine cosine-sine pairs. 
Ideally, these pairs would encode as points on a perfect 
circle. If the phase relationship between the two channels 
differed from 90”, the circular Lissajous pattern would be- 
come elliptical. If distortion were present, the periodic track 
would cease to be elliptical. Figure 2 shows an accumulation 
of 1 000 000 fast-ADC event codes, binned into a coarse grid 
of 256X256 cells. The pattern is circular to about 1%. 

The presentation of Fig. 2 cannot be used to judge small- 
scale differential nonlinearity because count variations in its 
large bins result entirely from the geometric variation in cov- 
erage of the Lissajous path by the square bin checkerboard 
rather than by any defect of the TDC. To explore differential 
timing nonlinearity and time sample density, we conducted a 
third test exploring the coverage of the (X,Y> plane. Here we 
accumulated a Lissajous pattern using the full 12-bit resolu- 
tion of the fine ADCs. The mole run resulting from 567 000 
random events is shown in the oblique view of Fig. 3, which 
spans l/16 of the X range and l/16 of the Y range. Figure 3 
shows that the (X,Y) plane is statistically well covered by 
samples. 

Our fourth set of tests examined the pipeline information 
for statistical uniformity of the derived fine start-time esti- 
mates using a floating point standard BASIC arctangent 
function. This test is a sensitive indicator of the system’s 

FIG. 3. Magnified portion of the full resolution 4096X4096 fine cosine and 
sine trajectory, showing the coverage of the track by the individual data 
samples. Missing ADC codes occur at some major bit transitions. 

freedom from high-frequency wave form distortions. To con- 
duct this test we generated a train of random pulse events, 
applied Eqs. (4)-(8), performed an arctangent transformation 
to each fine cosine-sine pair to obtain a measure of fine 
phase, and accumulated the events in bins of size 1 ps (5 
nsl5000). The low-frequency timing channel was ignored as 
were STOP events. 

The resulting data, containing 1 000 000 random starts, 
are shown in Fig. 4. In this presentation, a fixed phase shift 
error between the cosine and sine waves would introduce a 
sinusoidal density variation. Harmonic distortions cause 
other wavelike density irregularities. What we see is a small- 
scale bin-to-bin scatter plus an undulation having three 
cycles per complete cycle of fine phase. The scatter exceeds 
the 7% rms expected from random-event arrivals. It is 
largely an “orchard effect” analogous to viewing a periodic 
grid of trees from a point in an orchard (in contrast to view- 
ing a random population of trees in a forest): The scatter is 
deterministic, and arises from the limited number of avail- 
able X and Y codes that contribute counts to a given phase 
bin. The three-cycle undulation reveals a small (correctable) 
degree of harmonic distortion at the level of a few percent. 

In an ideal TDC, recovered time intervals would be dis- 
tributed about the true mean start-stop interval with a nar- 
row Gaussian distribution characteristic of the front-end ap- 
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FIG. 4. Uniformity test for recovered fine phases, using the arctangent func- 
tion on 1 000 000 random evenfs. Ideal TDC processing would yield a flat 
probability in phase, subject only to random arrival statistics. The random- 
looking irregularities arise from the varying numbers of X and Y codes that 
yield a given phase; we term this the “orchard effect.” The waves are 
caused by harmonic distortion. 
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FIG. 5. Distribution of TDC outputs for an asynchronous train of 104 ns 
intervals. Raw ADC data are applied to the arctangent routine. Bin size=1 
ps; rms deviation is 39 ps. 

erture noise. In practice, the mean of the recovered time 
intervals accurately corresponds to the true mean to within 
the precision of the quartz time base. However, the observed 
probability distribution is broader than predicted from front- 
end noise considerations alone, and it is non-Gaussian. The 
reason is the presence of harmonic FM distortion in the 
sampled 200 MHz clock wave forms. This causes a start 
sample to be early or late, up to 10 ps, depending on its start 
clock phase. A stop sample experiences a similar error cor- 
related with the stop phase. 

We have developed a means of correcting these har- 
monic errors by accumulating and examining histograms of 
start phases and stop phases separately. A long accumulation 
of start and stop phases is made in histogram form. Since the 
events arrive randomly in time, all start phases and all stop 
phases have an equal probability of being observed, and, 
therefore, a long accumulation of events should produce two 
completely flat histograms. Any deviation from linear time 
recovery will be revealed as lumpiness in the histograms. 
The observed histograms are integrated to produce the actual 
time transfer function, and a list of correction terms is gen- 
erated to be applied to the START and STOP phases of sub- 
sequent events. 

In a fifth set of tests we explored the distribution of 
event interval timings using the combined coarse/fine start- 
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FIG. 6. Distribution of TDC outputs as in Fig. 5, except raw data are 
linearly adjusted for offset and span using X and Y peak detectors. 
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FIG. 7. Distribution of TDC outputs as in Fig. 6, except data are also 
corrected for phase shift between X and Y, using the ellipticity of the en- 
coding oval. 

stop computation described in Sec. IV above. We employed a 
programmable bench oscillator and a switchable segmented 
delay line to give reproducible start-stop pairs. The bench 
oscillator was not synchronized in any way with the 200 
MHz TDC clock. Time interval distributions exhibit a statis- 
tical uniformity far superior to the start-phase or stop-phase 
distributions because intervals average the digitizer outputs 
over all possible TDC time base phases. 

Figures 5-8 illustrate the ability of the pipeline process- 
ing to accommodate hardware imperfections. Each plot is the 
result of repeated measurements of a delay line generated 
time interval of 104 ns. For these accumulations we used a 
bin size of 1 ps, although a much coarser (or finer) bin size 
could have been chosen. In Fig. 5, no corrections have been 
made to the raw ADC values prior to the arctangent stage. 
The timing error is 39 ps rms. In Fig. 6, peak detectors have 
been used to linearly center and rescale the ADC code ranges 
to a uniform diameter. In Fig. 7, the ellipticity correction has 
been applied as well to remove any systematic interchannel 
phase error. In Fig. 8, we additionally employed the histo- 
gram method for removing harmonic modulation of the start 
and stop times. The distribution of timing errors is nearly 
Gaussian. The timing error is 4.1 ps rms. In Fig. 9, we show 
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FIG. 8. Distribution of TDC outputs as in Fig. 7, except data are also 
corrected for harmonic distortion using integrated count histograms of start 
phase and stop phase. Each correction histogram contained 1000 000 
events. Root mean square deviation is 4 ps. 
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FIG. 9. Distribution of TDC outputs from an accumulation of 10 million 
pulse pairs from a 101 ns delay cable. Histogram bin size is 125 fs. The 
bin-to-bin count fluctuations are about 0.3% rms, .of the same order as ex- 
pected from random-event arrival statistics alone. We estimate that our 
TDC’s small-scale differential nonlinearity,does not exceed 400 as rms. 

a long accumulation with a 101 ns delay cable but with a bin 
size of 125 fs to show the freedom from fine-structure arti- 
facts. The bin-to-bin count scatter is comparable to the 0.3% 
rms expected from Poisson event arrivals alone. The pres- 
ence of small-scale differential nonlinearity would appear 
here as an additional count variation. We estimate that any 
such nonlinearity is less than 400 as rms. A test of large-scale 
differential nonlinearity is provided by binning a large num- 
ber of random start-stop pairs into time-interval groups. Us- 
ing 250 intervals of 320 ps each and 75 million start-stop 
pairs, we obtain the plot shown in Fig. 10, which reveals the 
presence of some residual differential nonlinearity at the 1% 
level. 

Finally, we have examined the short-term and long-term 
time measurement stability of our TDC in a laboratory envi- 
ronment with a continually powered double-pulse source. At 
initial power-on, the TDC timings show an initial upward 
trend that levels off after 5 min of steady operation. The 
initial deviation is about 20 ps from the long-term value. 

330000 

After 15 min of operation, deviations do not exceed 5 ps. 
These errors are presumably a result of differential gate de- 
lays in the start-stop logic and in the s/h circuits. 

VII. ALTERNATIVE IMPLEMENTATlONS 

The work reported here provides a basis for instrument- 
ing a variety of delay line detectors. In the course of this 
work, we have considered some alternative implementations 
which are also attractive. For example, the cosine/sine/ 
arctangent coding is only one of many possible bases for 
clock generation. Any periodic wave form pair will serve. 
Triangle waves yield diamond-shaped Lissajous patterns that 
can be decoded by a suitable table. Trapezoidal waves pro- 
duce square patterns, which could also work. The cosine/sine 
pair simply happens to have the least bandwidth, and can be 
made acceptably pure by applying a reasonable degree of 
passive narrowband filtering. 

The coarse timing channel is far less critical than the fine 
200 MHz timing channel, and in considering alternative 
implementations of the present TDC we note that great lib- 
erties can be taken with its design. It is necessary only to 
resolve individual cycles of the 200 MHz fundamental. For 
example Berry’s?’ design accomplishes this with a digital 
binary-divider countdown chain driven at a frequency of 2 f. 
The chain is gated off to determine the coarse count. 

The arctangent function on which our present implemen- 
tation is based could be replaced by an arbitrary lookup table 
whose elements are chosen in such a way as to minimize the 
total timing error. In this way, the effect of any sampled 
clock wave distortion would be eliminated along with phase 
shifts and nonlinearities in the front end. Since the true dis- 
tribution of phase estimates is flat for any test signal includ- 
ing (especially) random-event arrivals, it is feasible to create 
an adaptive algorithm that modifies the phase table continu- 
ally during production data-acquisition runs in such a way as 
to maintain a flat statistical distribution of recovered phases. 

Finally, we note that the field of microwave analog inte- 
grated circuits is advancing rapidly. Specifically, chips for 
digital sampling oscilloscopes now under development can 
acquire samples from a full amplitude 5 GHz sine wave.‘r 
Unlike other architectures, our TDCs resolution is limited 
only by its sampler speed. A 5 GHz arctangent TDC could 
resolve to better than 1 ps. 
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