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Abstract 

 
The Astronomy and Astrophysics Decadal Survey’s highest recommended space mission was a 
Wide-Field Infrared Survey Telescope (WFIRST) to efficiently conduct three kinds of studies: 
dark energy surveys, exoplanet surveys, and guest surveys.  In this paper we illustrate four 
potential WFIRST payloads that accomplish these objectives and that fully utilize optical and 
technical advances made since the community input to the Decadal Survey. These 
improvements, developed by our group, are: unobscured 1.3 or 1.5 m apertures; simultaneous 
dual focal lengths delivering pixel scales of 0.18” for imaging and 0.38” or 0.45” for slitless 
spectroscopy; the use of a prism in converging light for slitless spectroscopy; and payload 
features that allow up to 270 days/year observing the Galactic Bulge.  These factors combine to 
allow WFIRST payloads that provide improved survey rates compared to previous mission 
concepts. In this report we perform direct comparisons of survey speeds for constant survey 
depth using our optical and exposure-time tools previously developed for JDEM.  We further 
compare these four alternative WFIRST configurations to JDEM-Ω and to the European Space 
Agency’s Euclid mission, and to an alternative Euclid configuration making use of the lessons 
learned here that delivers performance approaching that of WFIRST.  We find that the 
unobstructed pupil is a major benefit to weak lensing owing to its tighter point spread function, 
improved signal to noise, and higher resolved galaxy count.  Using two simultaneous plate scales 
in a fully focal system is practical and simplifies the optical train, and the use of a prism in 
converging light offers improved throughput compared to a grism.  We find that a 45° outer 
baffle cutoff angle, combined with fully articulated solar panels and K-band antenna, 
substantially increase the exoplanet yield. These findings were presented at the 217th AAS 
conference (M. Levi, et al., Jan 2011). 
 
Subject heading: Astronomical Instrumentation 
 

1. Introduction 
 
The recently published Decadal Survey “New Worlds, New Horizons in Astronomy and 
Astrophysics” (NRC, 2010) prioritized ground and space based astronomy for the coming 
decade.  Their highest recommendation for space was a near-infrared survey mission they named 
Wide Field Infrared Survey Telescope (WFIRST); it was based largely on the NASA DOE Joint 
Dark Energy Mission (JDEM) family, in particular JDEM-Ω (Gehrels 2010). WFIRST will 
operate for five to ten years and will combine the three leading dark energy investigations (weak 
lensing, baryon acoustic oscillations, and supernovae) with a microlensing exoplanet survey, and 
allow additional studies proposed by guest investigators.   
 



In the following sections we briefly review the WFIRST requirements, and then contrast four 
new alternative payload concepts with the original JDEM-Ω design on which the Decadal 
recommendations were based, and to the Euclid mission and a variant of Euclid. In section 4 we 
detail some added features of these WFIRST alternative payloads. We believe that significant 
payload and mission improvements will result by adopting one of these alternative 
configurations, with little or no impact on cost, schedule, or risk.  
 

2. WFIRST Requirements 
 
The dark energy goals are to measure the expansion history of the universe and the growth of 
large-scale structure, to provide tight constraints on the equation of state of dark energy, and test 
the validity of general relativity.  The exoplanet research would reveal a population of planets 
made visible by microlensing against the dense stellar background of the Galactic Bulge.  Guest 
investigator time would also be made available for astronomers needing wide or deep exposures 
in the near infrared. In Table 1, we list the requirements posed by the Decadal Survey and its 
prioritization panel as they bear on these three broad objectives.  
 

TABLE 1 
Functional requirements from the Decadal Survey 

Objective Requirement Page Reference* 

Weak Lensing Image 2×109 galaxies 
Shapes and photo-z’s for ~ 109 galaxies 
Photometry for photo-z’s 
Spectroscopy of calibration sample 

DS 7-17 
SF 1-18 
SF 1-15 
SF 1-15 

Baryon Acoustic 
Oscillations 

Spectra of 2×108 galaxies 
Spectroscopic redshifts of ~ 108 galaxies 
Redshifts for 1<z<2 
Restframe IR photometry 

DS 7-17 
SF 1-18 
SF 1-15 
SF 1-18 

Supernovae Measure & classify ~ 2000 SNe 
Near-IR photometry for z<1 

DS 7-17 
SF 1-15 

Exoplanet Microlensing Galactic Bulge microlensing survey DS 34, SF 4-32, PP 6-8 
Guest Observers Broad range of objectives PP 6-2, 6-8 
Payload Optics 1.5m telescope DS 7-17 

Note—*DS=Decadal Survey;  SF=Science Frontiers;   PP=Program Prioritization EOS Panel.  
 

3. Four WFIRST Payloads 
 
The starting point for this development effort was the collection of JDEM payloads that were 
developed jointly by NASA GSFC and DOE LBNL (Sholl et al 2008; 2009), culminating in the 
JDEM-Ω concept (Gehrels 2010) that used HgCdTe (MCT) sensors throughout. Since then we 
have explored the benefits of adopting three innovations: an unobscured telescope pupil 
(Lampton et al. 2010 and references therein), a simultaneous dual focal length (Sholl et al. 2010, 
Content et al. 2010; Grange et al 2010; Sholl et al. 2011), and a slitless spectrometer prism in 
converging light (Sholl et al 2010).  For WFIRST, we considered two alternative ways to 
perform imaging and wide field spectroscopy simultaneously.  One way is to use a common sky 
field but divide the light with a dichroic beamsplitter, with shorter wavelengths sent to the 



imager and longer wavelengths passing through a prism and focal reducer. This path leads to 
WFIRST-A (1.5m aperture, 8x4 MCT imager, 4x2 MCT spectrometer) and C (1.5m aperture, 
5x5 MCT imager, 2x2 MCT spectrometer), detailed below.  The other way is to divide the 
surveys spatially, with adjoining fields on the sky, each spanning the full wavelength range: 
WFIRST-B has an 8x4 imager plus two 2x2 spectrometers, and D has a 5x5 imager plus a 2x2 
spectrometer.  All imagers have a 0.18” pixel scale. In B and D the bulkier Cassegrain optics 
leave less room within existing 4m launcher fairings, so we had to reduce the primary mirror size 
to 1.3m for options B and D.  An on-axis pupil routinely leads to a payload whose rear-end 
optics (spectrometers, cameras etc) are located behind the primary mirror, yielding a payload that 
is long and slender, while an off-axis configuration leads to a more boxlike payload whose 
secondary/tertiary optics and focal planes stand alongside the telescope, not behind it.  A related 
requirement is to provide a several-square-meter passive thermal radiator closely coupled to the 
focal planes.  Our four payloads satisfy both requirements because the entire shaded side of each 
payload is available for a passive radiator, and the package dimensions can be accommodated by 
existing 4m diameter EELV fairings (Heetderks, 2010).  
 

TABLE 2 
Alternative Dark Energy Mission Payload Configurations 

Payload 
WFIRST 

A 
WFIRST 

B 
WFIRST 

C 
WFIRST 

D 
JDEM  
Ω 

Euclid 
VIS        NIR 

Euclid-Plus 
VIS      NIR 

TELESCOPE        
Aperture, m 1.5 1.3 1.5 1.3 1.5 1.2 1.2 
obstructed? No No No No Yes Yes No 

Dichroic? Yes No Yes No No Yes Yes 
IMAGER        

FoV†, sqdeg 0.336 0.336 0.262 0.262 0.252 0.466 0.466  0.466 0.466 
λ range, μm 0.5-1.5 0.5-2.0 0.5-1.5 0.5-2.0 0.4-2.0 0.5-0.9 0.9-2.0 0.5-0.9 0.9-2.0 

Pixel, arcsec 0.18 0.18 0.18 0.18 0.18 0.10 0.3 0.10 0.3 
WFE*, nm RMS 52 40 22 46 45 64 118 64 118 

Sensor chips 32MCT 32MCT 25MCT 25MCT 24MCT 36CCD 16MCT 36CCD 16MCT 
imager pixels 134M 134M 105M 105M 101M 604M 67M 604M 67M 

BAO  SPECTR          
FoV†, sqdeg 0.336 0.336 0.282 0.282 0.532 n/a 0.466 n/a 0.466 
Pixel, arcsec 0.36 0.36 0.45 0.45 0.37  0.3  0.3 

WFE*, nm RMS 60 103 73 72 118  118  118 
Sensor chips 8 MCT 8 MCT 4 MCT 4 MCT 12 MCT  16MCT  16MCT 

Spectro pixels 34M 34M 17M 17M 50M  67M  67M 
Disperser 1 prism 2 prisms 1 prism 1 prism 2 prisms  4 grisms  1 prism 

λ range, μm 1.5-2.0 1.1- 2.0 1.5-2.0 1.1-2.0 1.1-2.0  1.0-2.0  1.0-2.0 
z range at Hα 1.3-2.0 0.7- 2.0 1.3-2.0 0.7- 2.0 0.7-2.0  0.7-2.0  0.7-2.0 

SN SPECTRO        
FoV†, sqarcsec 100 100 100 100 slitless n/a n/a 

λ range, μm 0.4-2.0 0.4-2.0 0.4-2.0 0.4-2.0    

Notes—  BAO SPECTR is a wide field slitless BAO spectrometer; SN SPECTRO is an IFU coupled 
to a low dispersion prism spectrometer. *WFE = system wavefront error. †FoV = active field of view. 

 
In Table 2, we list the characteristics of the four WFIRST candidates developed here and 
compare them with three other dark energy mission concepts, JDEM-Ω (Gehrels 2010), the ESA 
Euclid mission (Duvet 2010; Wallner et al 2010), and “Euclid Plus” which is Euclid with an 
unobscured pupil and its four grisms replaced by one prism. To estimate the system wavefront 



errors we have doubled the theoretically optimized WFEs to account for manufacturing and 
alignment errors. For Euclid we doubled the theoretical WFE reported by Sanz (2010).   
 

Figure 1: On-orbit configuration of WFIRST-A as described in the text. This system is an unobscured 
three-mirror anastigmat (TMA) with a dichroic beamsplitter at its exit pupil. The imager operates at 
the direct TMA f/15 speed, and accommodates a filter wheel as shown.  The wide-field slitless 
spectrometer uses a prism in converging light and demagnifying optics to deliver spectra at f/6. At the 
Cassegrain focus, a pickoff and magnifying relay (not shown) feed a small-field IFU spectrometer. 
All focal planes are located on the cold side of the payload with passive cooling. The solar panels and 
K-band downlink antenna are fully articulated allowing extended observations of the Galactic Bulge 
for microlensing. Artwork by R.E.Lafever, LBNL. 

 
An artist’s concept of WFIRST-A is shown in Figure 1.  The unobstructed three-mirror 
anastigmat telescope is arranged with its secondary and tertiary optics located on the shaded 
(cold) side of the payload where they are baffled against stray light and heat.  The sensor 
packages are located there as well, for best passive cooling and convenient access for ground 
integration.  The K-band antenna is fully articulated, and the solar panels are articulated about 
one axis.  The outer baffle front cutoff angle is 45°, allowing sun-target angles > 45°. 



In Figure 2 we illustrate the focal plane layouts on the sky, from Sholl et al. (2010, 2011), and 
list their pixel scales in arcseconds. A filter wheel can be installed into the imaging channel of 
any of these imager configurations without significant loss of  performance (Lampton 2011).  
 

Figure 2: Sky fields for the four WFIRST configurations explored here, from Sholl et al. (2011). Red: 
spectrometer field; blue: imager field.  Sky fields overlap in dichroic beamsplitter configurations A 
and C. Pixel scales shown are for 2K x 2K HgCdTe sensors with 18μm pixels. The compact 
Cassegrain layouts of A and C permit them to use a 1.5m primary mirror and fit within an EELV 4m 
launch fairing.  

 
Survey rate is the single most important parameter for each science objective. The background 
limited survey rate reaching a given source flux with a required continuum signal to noise ratio 
SNR with a bandwidth Δλ and background (chiefly zodiacal) continuum flux B, is: 

 
 

 
Here, Flux represents the photon continuum flux of the faintest required target, Ωfov is the field of 
view, AE is the product of light gathering area and all efficiencies, and Ωhalfenergy is the solid 
angle of the image blur patch that contains half the target energy.  A related formula applies for 
line emitter surveys: 
 
 
 
Again Δλ refers to the entire bandpass, but now Flux refers to the target’s line photon flux at 
threshold.  These expressions emphasize the need for a wide field of view, a large light gathering 
power, and a small half-energy spot size.  
 
In this report we estimate survey rates using the public JSIM mission calculator (Levi, 2009) 
which takes into account a number of additional practical considerations: (a) the effective point 
spread function is not a number but is a function of wavelength, galaxy size, optical 
performance, pixel size, and attitude stability; (b) galaxy size is not a number but is a distribution 
that depends on redshift; (c) the instrumental throughputs and point-spread functions depend on 
wavelength and have to be integrated over each waveband; (d) for shorter exposures and for 
supernova spectroscopy, detector noise contributions become significant and must be included; 
(e) mission time is extended by sensor readouts, attitude maneuvers, and calibration sequences; 
(f) the Zodiacal foreground is a function of ecliptic latitude, longitude and wavelength; (g) the 
sky background becomes increasingly cluttered by Galactic extinction and Galactic star 
populations as mid- and low-latitude fields are examined;  and (h) even at high Galactic latitudes, 
a fraction of potential slitless spectroscopy targets will be lost as a consequence of interference 
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from other objects --- a situation that is ameliorated by performing dithers as a series of roll and 
translation maneuvers rather than translations alone.  
 
In JSIM, the encircled energy (EE) function is evaluated from the Bessel transform of the system 
modulation transfer function (MTF), which itself has several contributors.  Following Schroeder 
(2000) we normalize angles and angular frequencies to the angular cutoff frequency of the pupil 
given by fC=D/λ with z=f/fC and w=θfC, and compose the MTF from five factors: 
 
 
 
 
 
 
 
The target galaxies are assumed to follow exponential profiles, for which Tgal(z) has a functional 
form (1+kz2)-1.5 where k=(3.744·Ree·D/λ)2 where Ree=half encircled energy radius and again z = 
normalized angular frequency. The attitude control system jitter is assumed to contribute a 
Gaussian broadening and hence has a Gaussian Tacs(z) factor as per Schroeder’s eq 11.1.18. For 
the optical diffraction by a centrally obscured circular pupil, we adopt the usual formulism 
described by Wetherell (1980) for Tdiffract(z). For the optical aberrations, we started with the 
field-averaged theoretically optimized wavefront error (WFE) from each WFIRST optical train 
from Sholl (2010, 2011) or from Sanz (2010), and doubled these to account for additional WFE 
arising from manufacturing, metrology, and launch induced misalignments. We then distributed 
that WFE into the spatial frequencies according to the Fischer et al (2000) exponential Hopkins 
ratio model with a wavefront correlation of 0.333 (see also Olson 2008) to obtain an aberration 
MTF contributor Taberr(z).  The Tpixel(z) factor was evaluated for square pixels using the 
azimuthally averaged broadening expression of Schroeder, eq.17.1.5. 
 
The weak gravitational lensing survey requires that WFIRST determine shears for ~109 galaxies, 
provide accurate photometry to contribute usefully towards groundbased photo-z estimates, and 
obtain a spectroscopic sample to calibrate the photo-z estimates.  To accomplish this for a 20,000 
square degree survey field will require reaching a surface density ~ 30 galaxies per square 
arcminute and a threshold ABmag ~ 25 (Leauthaud et al., 2008; Jouvel et al., 2009) with an 
individual galaxy ellipticity error <15%, and a threshold signal to noise ratio, SNR, of 20.  This 
SNR is driven both by ellipticity error and photometric error requirements. 
 
The basis of our survey rate calculation is to model the imager wavelength bandpass as a single 
30% wide band centered on 800 nm.  Focal planes having 25 to 32 MCT arrays deliver 
instantaneous survey fields of 0.26 to 0.32 sq deg, as listed in Table 2.  For pixel subsampling 
(Bernstein 2002; Bernstein and Jarvis 2002), our estimated survey rates assume four dithers per 
field separated by 40 sec dead time for sensor readout and attitude maneuvering.  To deal with 
chromatic shear and to provide photo-z information it will be useful to subdivide each exposure 
into adjoining wavebands, an option not explored here.  Depending on aperture, each field will 
require a total exposure of ~2 ksec. Approximately 4×104 image fields will constitute the 10,000 
square degree weak lensing survey.  
 

dz)2()MTF(z2 )EE(
1

0

1   wzJww 

 )()()()()()( zTpixelzTaberrzTdiffractzTacszTgalzMTF 



Our results are listed in Table 3. Compared to the JDEM-Ω payload, the WFIRST configurations 
show significantly improved weak lensing survey rate.  Although their apertures, pixel scales, 
and focal plane fields of view are closely comparable, the significant difference is WFIRST’s 
unobstructed aperture which leads to a more compact point spread function and therefore shorter 
exposure times reaching a given signal to noise ratio, and a higher density of resolved galaxies. 
These two benefits are particularly clear in the direct comparison of Euclid-Plus to Euclid. We 
find that both Euclid-Plus and the WFIRST options deliver twice the survey speed and improved 
galaxy count compared to JDEM-Ω and Euclid. In particular note the increased density of 
resolved galaxies.  Remarkably, WFIRST-B and D accomplish this with telescopes smaller than 
the 1.5m aperture of JDEM-Ω.  
 
A useful sample of spectroscopic redshifts for calibrating the weak lensing photo-z redshifts 
could be obtained using WFIRST’s supernova spectrometer.  This instrument could be either an 
integral-field IFU (10” x 10”) or slit (100”x1”) spectrometer. Either field is large enough that, 
during routine survey operations, statistically ~1 galaxy will fall into each spectrometer field, 
thereby delivering ~ 4×104 random (unselected) galaxy spectra with no increase in time 
allocation since it would operate parasitically during the wide field surveys. Alternatively a 
smaller field SNS could be used in a targeted mode. These options have not been evaluated here.   
 

Table 3 
Weak Lensing Survey Results 

 WF-A WF-B WF-C WF-D JDEM-Ω Euclid Euclid+ 

SurveyRate, 25mag:   sqdeg/yr 5578 4067 4616 3187 2190 2640 6592 

Galaxies per sq arcminute 42 42 42 42 32 29 42 

Note—For all missions we set exposure times to deliver a signal to noise ratio of 20 on ABmag=25 
targets, for one waveband 30% wide at 0.8μm. Zodiacal flux is assumed to be the average of the 
darkest 10,000 square degree sky. Four dithers per field are assumed. 

 
To conduct a baryon acoustic oscillation survey, WFIRST is expected to obtain spectra of 
~2×108 galaxies and determine reliable redshifts for ~108 of them over the redshift range 
1.3<z<2 based on the Hα emission line.  The Decadal Survey recommended 1<z<2 but expected 
advances in ground based spectroscopy programs will close this window appreciably; 
furthermore the JDEM ISWG (2010) recommended 1.3<z<2.0.  We have based our survey rate 
predictions (Table 4) on the galaxy luminosity function described by Ilbert et al. (2005) and the 
redshift distribution of Ilbert et al. (2006), and the need to achieve a minimum detectable flux of 
2×10-16 erg/cm2sec for 66% of the emission line galaxies on the Hα line. Four roll dithers will be 
sufficient to disambiguate the prism spectra at this level (Kent, S., private communication 2011).  
For Euclid we have adopted a grism efficiency of 65% relative to the prisms in the other 
missions listed. We note that for slitless spectroscopy, the noise level on faint targets is set by the 
Zodiacal continuum intensity, which is relatively low in the 1.5-2.0μm band compared to shorter 
wavelengths.  For this reason the restricted spectroscopy waveband (and restricted Hα redshift 
range) of our A and C options provides an improved survey rate compared to the others.  
 
 



Table 4 
Baryon Acoustic Oscillations Survey Rate Results 

 WF-A WF-B WF-C WF-D JDEM-Ω Euclid Euclid+ 

Survey Rate, sqdeg/yr, 0.7<z<2.0 * 4038 * 3026 4014 1863 4737 

Survey Rate, sqdeg/yr, 1.3<z<2.0 11223 7997 8469 6165 8331 3873 9251 

Note—All missions including Euclid were evaluated for a minimum detectable Hα line flux of   
2×10-16 erg/cm2sec with 66% success rate using 4 roll dithers.  *The WF-A and WF-C spectrometer 
variants span only 1.5<λ<2.0μm, hence are limited to Hα 1.3<z<2.0. 

 
For exoplanet microlensing no simple survey rate expression describes the science yield owing 
to the complex background/foreground structure of the Galactic Bulge.  Rather than implement a 
lensing simulator, we have instead adopted a figure of merit based on comparing WFIRST’s 
parameters to those of the well-studied Microlensing Planet Finder (MPF) mission (Bennett et 
al., 2009, and references therein). The scaling parameters we adopted are field of view, area-
efficiency product, bandwidth, center wavelength, observing efficiency, and the inverse of the 
half-energy diameter on the focal plane.  The WFIRST examples (Table 5) emerge closely 
comparable to MPF owing to our larger and unobscured telescope apertures, which helps tighten 
the point spread function, even though our WFIRST imagers have less field of view than MPF.  
In comparison JDEM-Ω suffers from having a non-articulated solar panel that restricts its annual 
dwell on the Bulge to two periods centered on the equinoxes.  For Euclid we assume that 
exoplanet lensing measurements will be done with its Near Infrared Photometer H band imager.  
Euclid’s payload configuration (Wallner et al. 2010) has a nonarticulated solar panel which like 
JDEM-Ω limits its stay time on the Bulge. Its payload length is constrained by its Soyuz ST 2-1B 
launcher (Wallner et al. 2010), and Euclid therefore lacks a strongly angled forward extension of 
its outer baffle that would permit extended stays on the Bulge.  
 

Table 5 
Exoplanet Discovery Rate Results 

 WF-A WF-B WF-C WF-D JDEM-Ω Euclid Euclid+ 

Relative exoplanet discovery rate 1.43 1.46 1.12 1.14 0.21 0.48 0.85 

Note— Exoplanet discovery rates relative to Microlensing Planet Finder, scaled according to imager 
sky area, annual time available on the Bulge, and other factors (see text). 

 
For supernova follow-up spectroscopy, we assume that a robust ground-based program and/or 
WFIRST imager data (JDEM ISWG recommendation) will serve to generate supernova triggers. 
WFIRST will deliver shallow spectra at a series points on each light curve, plus one deep 
spectrum taken near maximum light.  The shallow spectra permit synthetic photometry without 
errors from assigning K-corrections, while the deep spectrum is sufficient to clearly determine 
the line ratios that are most useful in typing SNe (e.g. SiII strong; HeI absent) for 0<z<1.4.  The 
spectrometer should deliver a resolving power > 70 and span 0.4<λ<2.0μm.  It can be 
accommodated in WFIRST by intercepting a small portion of the field at Cassegrain focus, 
which in all four configurations lies upstream of wide field imager and spectrometer.  There, a 
10” field is smaller than 1mm and, at f/6, the relay optic and spectrometer will be compact.  We 



have assumed that each payload uses an integral field unit (IFU) ahead of its spectrometer in 
estimating the follow-up rates listed in Table 6.  

Table 6 
Supernova Survey Rate Results 

 WF-A WF-B WF-C WF-D JDEM-Ω Euclid Euclid+ 

SNe followed per year 2130 1531 2129 1565 See text n/a n/a 

Figure of Merit, per year 120 112 120 112    

Note— We assume that the four WFIRSTs use IFUs, and that exposure times are chosen to give a 
peak continuum signal/noise = 15 with a resolution of 100 per pixel, for SNe uniformly distributed 
out to z=1.4. In addition, sixteen shallow spectra are taken with signal/noise = 4 per pixel for a 
resolution of 30. Figure of merit is described in the text. 

An implementation decision to be taken is the choice between a slit type spectrometer and a two-
dimensional integral field unit (IFU) spectrometer.  The IFU offers three clear benefits to the 
mission science: full capture of the SN host galaxy, freedom in choice of roll angle of 
observation, and improved attitude control tolerance.  Although the slit spectrometer has greater 
flight heritage, we believe that the advantages of the IFU warrant its adoption for WFIRST, 
particularly in view of the extensive IFU flight qualification program pursued by the French 
Space Agency CNES (Ealet et al., 2006; Aumeunier et al., 2008; Cerna et al., 2008; Prieto et al., 
2008; Cerna et al., 2010). 

JDEM-Ω baselined a slitless spectrometer channel responsible for meeting the supernova 
spectroscopy requirement.  In JDEM-Ω spectroscopy, the zodiacal background per pixel-
resolution element is ~240 times higher than if an IFU were used, requiring ~240x longer 
exposure times when zodiacal-noise limited.  Only a couple of SNe within a week of peak 
brightness are expected within the JDEM-Ω field for a given exposure.  JDEM-Ω therefore does 
not compete well compared to missions with IFU-based or slit-based spectroscopy. 
 
We note here that multi-epoch spectroscopy has a practical advantage over the Astier et al. 
(2010) plan with seven broad band filters: with the continuous spectrum available there is no 
need to apply band-dependent K-corrections. Multi-epoch spectroscopy identifies both the light 
curve shape and the evolution of spectral features, for SN classification and subtyping. 
 
For the supernova survey figures of merit (FoM), we fit the cosmological parameters ΩM, w0, wa, 
and M  assuming a flat universe, and calculate FoM defined as 1/√(det(Cw0,wa)), for an input flat 
ΛCDM cosmology with ΩM =0.28.  We supplement the WFIRST data with 300 externally-
measured supernovae at z~0.05 and a Planck prior.  Each supernova has a 0.15 mag random 
scatter from intrinsic dispersion and measurement uncertainty.  For each survey, the WFIRST 
supernovae are uniformly distributed from 0.2<z<1.4.  Our systematic error model, suggested by 
Linder & Huterer (2003), sets a floor for each 0.1 redshift bin with σsys=0.02(1+zbin)/2.4.  The 
resulting FoMs are given in Table 6 and demonstrate the supernovae and Planck alone provide 
more than a factor of two improvement compared to the combined DETF Stage II results from 
all dark energy probes (Albrecht et al., 2006). 

 



4. Specific Payload Features 
 
The fact that a wide-field imager, a wide-field slitless prism spectrometer, and a narrow-field 
IFU spectrometer are simultaneously available in these WFIRST payload configurations will 
allow a highly productive joint survey to be conducted, yielding WL and BAO products and a 
representative sample of galaxy spectroscopic redshifts during the same mission phase.  This 
simplification will materially benefit overall mission productivity.  The individual science 
objectives can interleave into a mission in many ways ranging from highly parallel to fully serial.   
 
Unlike missions like HST and JWST, a survey payload must deliver its good image quality over 
a large field of view.  The usual limitations on mass, volume, cost, schedule argue strongly for 
adopting the smallest telescope that can deliver the required performance.  Traditional space 
telescopes are centrally obstructed by their secondary mirrors and central stray light shields. 
These impose no serious performance impact provided that the blockage is small compared to 
the primary mirror diameter.  However in a wide field instrument, the secondary mirror and its 
baffle must grow to accommodate the field, and the diffraction pattern suffers.  As shown by 
Lampton et al. 2010, this diffraction pattern can seriously enlarge the half energy radius and 
hence degrade the survey rate, compared to an unobstructed pupil.  Such an obstructed pupil 
loses 25% of the incident flux via direct blockage, and another 25% in peak flux owing to added 
diffraction loss to the surrounding rings. In Figure 3 below we show the growth in half light 
radius (EE50 radius) with increasing wavelength for four alternative telescopes.  
 

Figure 3: A system’s half encircled light radius (EE50) 
is determined by a number of factors including 
aberrations, optical manufacturing errors, alignment, 
pixellization, and attitude control system jitter. Here we 
plot the EE50 radius for four examples: 1.1 and 1.3m 
apertures, unobscured and 50% linearly obscured. At 
increasingly long wavelengths, where signal-to-noise 
ratio is most demanding, diffraction dominates the 
other blur contributors, particularly for smaller 
telescope apertures.  To reach the larger redshift  
targets it is important to minimize the diffraction, 
which unobstructed apertures accomplish. Background 
limited exposure times go as the square of the EE50 
radius. After Lampton et al. (2010). 

 
 
A second advantage of an unobscured pupil is the freedom from diffraction spikes originating in 
the pupil blockage caused by the secondary mirror support structure.  These spikes complicate 
the determination of instrumental shear owing to their strongly chromatic nature and the 
concomitant errors in subtracting them from wideband images. 
 
Although unobscured three-mirror  anastigmat telescopes date back to Cook (1979) and Korsch 
(1980), most wide field telescope designs continue to use the centrally obscured Korsch (1977) 
annular and full-field TMAs, or the centrally obscured eccentric field Williams (1979) TMA. 
The traditional preference for axisymmetric primary mirrors is that the net aspheric departure, 
and hence the figuring time, is smaller.  With contemporary computer-driven grinding and 



figuring, however, this economy has faded: indeed unobstructed apertures are now becoming 
popular for remote sensing applications owing to their improved image contrast per dollar spent.   
 
Traditional space observatories (HST, JWST) employ a focal telescope to deliver a sky image to 
a focal plane, which is divided up into field regions dedicated to each onboard instrument.  Each 
such instrument then can image directly or recollimate and refocus to conduct spectroscopy 
and/or imaging at its unique required focal length.  In contrast, the dual-focal length concept of 
Sholl et al. (2010; 2011) yields a significant mission simplification for WFIRST where both 
imaging and spectroscopy are required.   
 

Figure 4: A 32-sensor imager focal plane accommodates modular Si CCDs and/or HgCdTe SCAs, 
with optional individual bandpass filters (Jelinsky et al. 2011; Besuner et al. 2011).  The focal plane 
metering structure (gray) is silicon carbide. Here, the CCDs are 3512 x 3512 pixels on fully depleted 
p-channel Si (Bebek et al., 2004; Baltay et al. 2010).  HgCdTe SCAs are Teledyne H2RG® 
2048x2048 pixels (Lorenzon et al. 2008; Schubnell et al. 2008, 2010).  Each sensor includes low-
power cryogenic electronics, yielding a photons-to-digital module. Four outrigger locations are 
available for reference photodiodes and/or star guiders. This assembly is shown in its qualification 
chamber mount during performance characterization, thermal cycling, and electromagnetic 
compatibility tests. 

 
The combined weak lensing and exoplanet requirements impose a fine pixel scale (~0.18”) and a 
large field of view (~0.3 sq deg) for the imager.  These in turn drive the need for  > 108 pixels in 
the imager, or >25 SCAs in a 2K x 2K format.  DOE has sponsored the development and flight 
qualification of fully modular focal planes of the necessary size (see Figure 4) complete with 
integral low-power front end electronics (Lorenzon et al. 2008; Schubnell et al. 2008, 2010; 
Baltay et al. 2010; Besuner et al. 2010; Jelinsky et al. 2011; Besuner et al. 2011).  The basic 
design uses SiC for the cryogenic metering platform and sensor mounts.  To support its 
cryogenic qualification testing, an optical stability metering instrument has been developed 
(Edelstein et al. 2011).  The focal plane provides additional integral mounting locations for 
optional guiders and for a complement of photometric diode sensors that assist flat field 
calibration (Scarpine et al., 2010; Baptista & Mufson 2010).  The ratio of active sensor span to 



grid spacing is 4:5. By moving the sky field in diagonal steps whose x and y lengths are ¼ the 
sensor active area size, each group of five such steps yields a filled uniform depth survey. The 
large pixel count and the many dither steps per field deliver a useful tolerance to hot and dead 
pixels in the array. The sensor modules can be individually fitted with bandpass filters, offering 
an alternative to using a filter wheel: the color information could be generated as part of the 
shear mapping strategy. 
 
For exoplanet microlensing survey work it is highly desirable to provide for frequent repeat visits 
(~ 1ksec cadence) to a number of fields near the Galactic Bulge, and to sustain this visit pattern 
for an extended period of time considerably longer than the 20-50 day durations of typical 
lensing events.   These requirements have three mission impacts.  First, the optical system will 
need to baffled in such a way as to permit observing targets as close as 50° to the sun; our 
recommended configurations share a long forward baffle extent and a 45º cutoff angle to permit 
this targetting. Figure 5 illustrates the visibility of the Bulge over the course of one year: the 
green zone shows that the sun-target angle exceeds 50° for nearly 9 months of the year. Second, 
the solar panels must be fully articulated to maintain a positive power margin throughout the 
needed range of sun-target angles.  Third, to maximize time-on-target, it is desirable to use a 
fully articulated K-band antenna so that downlink can proceed during data taking.  
 

Figure 5: Sun-target angle STA for Baade’s window as a function of day of year.  The green band is 
the range of STAs that is accessible with the 45° front sunshade angle.  

 
Driven by the requirement for maximizing dark sky time, dark energy mission planning (e.g. 
Euclid; JDEM) is usually based on observing from a halo orbit about the Sun-Earth L-2 
Lagrange point.  Such a location is free from eclipses and has essentially no interfering optical 
glare from Earth or Moon, and need not deal with the geomagnetically trapped outer-belt 
radiation environment. In contrast, explanet microlensing concepts (GEST: Bennett et al. 2003; 
MPF: Bennett et al. 2004, 2009) baseline the use of an inclined geosynchronous orbit which – 
although it poses a heavy radiation environment -- provides a continuous downlink capability to 
a single ground station, ideal for handling a sustained high data rate economically.   
 



The NASA-GSFC Mission Development Laboratory studied downlink options for SNAP/JDEM 
during 2008. In particular they explored four Ka-band high-rate data return alternatives from a 
spacecraft located at L-2 using ground facilities that were anticipated to come online in this 
decade.  We summarize those studies in Table 7.  
 

Table 7 
Alternative K-band Downlink Options From Earth-Sun L-2 Orbit Locations 

 White Sands DSN Gladstone DSN Madrid DSN Canberra 

Data rate, Mb/s 50 150 150 150 
S/C antenna, m 1.2 1.2 1.2 1.2 
XMT power, W 35 40 40 40 
Link margin, dB 2.10 8.06 6.51 3.37 

 
For comparison, the WFIRST payloads described here average ~ 50Mb/sec for 3h/day during 
combined WL+BAO surveys and ~60Mb/sec for 24h/day while surveying exoplanet fields. A 
new study should be conducted to reflect current and future ground capabilities and to identify a 
combination of data compression (e.g. Bernstein et al. 2010; Pence et al. 2010), onboard storage, 
region-of-interest processing on subsampled maps, and multiple-ground-station support that best 
meets the combined needs of WFIRST and the many other Deep Space Network users.  
 

5. Conclusions 
 

We have defined four potential WFIRST payloads that accomplish the Decadal Survey’s 
objectives and that fully utilize recent optical and payload advances. These four alternatives 
deliver significantly higher performance than the Joint Dark Energy Mission JDEM-Ω concept 
considered by the Decadal Survey. We also compared these configurations to JDEM-Ω and to 
the European Space Agency’s Euclid mission, and to an alternative Euclid configuration making 
use of the lessons learned here that delivers performance approaching that of WFIRST.  We find 
that the unobstructed pupil is a major benefit to weak lensing owing to its tighter point spread 
function, improved signal to noise, and higher resolved galaxy count, allowing (for instance) 
WFIRST-A to deliver 2.5 times the survey rate of JDEM-Ω, and an improved density of resolved 
galaxies, with a primary mirror of equal size.  Similarly Euclid-Plus offers a factor of 2.5 higher 
weak lensing survey rate than Euclid. For BAO surveys, the zodiacal continuum in the 
1.5<λ<2.0μm band is substantially fainter than in the broader 1-2μm band.  This fact gives 
WFIRST-A an advantage in signal to noise ratio and hence in survey speed compared to wider-
span spectrometers.  For example, WFIRST-A surveys 2.8 times faster than JDEM-Ω and six 
times faster than Euclid; Euclid-Plus offers more than twice the survey speed of Euclid. To 
address the supernova requirement the WFIRST payloads described here can follow up >1500 
SNe per year of dedicated time with multi epoch spectroscopy.  For exoplanets, these WFIRST 
payloads can deliver detection rates comparable to the dedicated MPF mission without 
significantly compromising the other objectives.  
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