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Abstract. We address the problem of how to test whether an observed solar hard X-ray bremsstrahlung
spectrum (I (ε)) is consistent with a purely thermal (locally Maxwellian) distribution of source elec-
trons, and, if so, how to reconstruct the corresponding differential emission measure (ξ (T )). Unlike
previous analysis based on the Kramers and Bethe-Heitler approximations to the bremsstrahlung
cross-section, here we use an exact (solid-angle-averaged) cross-section. We show that the problem
of determining ξ (T ) from measurements of I (ε) invOlves two successive inverse problems: the first,
to recover the mean source-electron flux spectrum (F̄(E)) from I (ε) and the second, to recover ξ (T )
from F̄(E). We discuss the highly pathological numerical properties of this second problem within
the framework of the regularization theory for linear inverse problems. In particular, we show that
an iterative scheme with a positivity constraint is effective in recovering δ-like forms of ξ (T ) while
first-order Tikhonov regularization with boundary conditions works well in the case of power-law-
like forms. Therefore, we introduce a restoration approach whereby the low-energy part of F̄(E),
dominated by the thermal component, is inverted by using the iterative algorithm with positivity,
while the high-energy part, dominated by the power-law component, is inverted by using first-order
regularization. This approach is first tested by using simulated F̄(E) derived from a priori known
forms of ξ (T ) and then applied to hard X-ray spectral data from the Reuven Ramaty High Energy
Solar Spectroscopic Imager (RHESSI).
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1. Introduction

Although it has long been accepted (e.g., Korchak and Ponomarenko, 1965) that
bremsstrahlung continuum radiation is the source of solar flare hard X-rays, it is
still unclear to what extent the electron distribution responsible for the emission
comprises (a) non-thermal particles trapped in a low-density plasma (thin-target),
(b) particles “injected into” and stopped in a dense plasma (thick-target), (c) a spatial
distribution of locally Maxwellian electrons with a location-dependent temperature
(T ), or some mixture of these three situations. In all cases, however (neglecting
anisotropy and albedo effects), the relationship

I (ε) =
∫

V

∫ ∞

ε

F(E, r)n(r)Q(ε, E) dE dV (1)

holds, where I (ε) is the bremsstrahlung emission rate (photons s−1 keV−1), n(r)
(cm−3) is the plasma density, F(E, r) is the electron flux density spectrum (elec-
trons cm−2 s−1 keV−1) at location r in the source volume V (cm3), and Q(ε, E)
(cm2 keV−1) is the bremsstrahlung cross-section for an electron of energy E and a
photon of energy ε. Under a purely thermal interpretation of Equation (1) (Brown,
1974), the electron distribution is assumed to be locally Maxwellian, i.e. (with T
in energy units)

F(E, r) = 23/2

(πme)1/2

n(r)E
[T (r)]3/2

e−E/T (r), (2)

so that Equation (1) becomes

I (ε) = 23/2

(πme)1/2

∫ ∞

0

∫ ∞

ε

n2(T )
E

T 3/2
e−E/T Q(ε, E) dE

dV
dT

dT, (3)

and the photon spectrum then provides information on the differential emission
measure loosely defined, for stratified structures, by

ξ (T ) = n2(T )
dV
dT

. (4)

A direct connection between I (ε) and ξ (T ) can be established by inserting ex-
pression (2) for the local electron distribution into the model-independent Equation
(1), with a Kramers approximation used for Q(ε, E). Because of the extreme sim-
plicity of the Kramers form (Q ∝ 1/εE), the result is a Laplace-transform-like
integral equation relating the photon spectrum (I (ε)) directly to the differential
emission measure (ξ (T )). This equation has been studied by Piana, Brown, and
Thompson (1995) in the framework of regularization theory for inverse problems
and applications to high-resolution balloon data (Lin and Schwartz, 1987) have
been considered. Craig and Brown (1986) noticed that an analogous approximate
equation could be obtained for the more complex Bethe-Heitler form of the cross-
section Q(ε, E). However, both of these use a rather coarse approximation to the
true cross-section, which as well as being quite smooth, has a much more complex
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analytic form (Koch and Motz, 1959). In integral inversion problems, small changes
in the kernel (Q here) can result in large changes in the solution (Kato, 1980; Kress,
1989) so that results using approximate representations of Q may not be reliable.

A completely rigorous description of the thermal model requires the introduction
of two integral equations. First, the (isotropic) source-averaged, effective-electron
flux spectrum (F̄(E)), defined as (Brown, 1971; Brown, Emslie, and Kontar, 2003)

F̄(E) = 1

n̄V

∫
V

n(r)F(E, r) dV, (5)

is related to the photon spectrum by means of the Volterra integral equation

I (ε) = n̄V
∫ ∞

ε

F̄(E)Q(ε, E) dE, (6)

with a fully correct form of Q(ε, E). Then, Equations (2), (4), and (5) lead to
the Fredholm integral equation relationship between F̄(E) and ξ (T ) (Brown and
Emslie, 1988)

F̄(E) = 1

n̄V
23/2 E

(πme)1/2

∫ ∞

0

ξ (T )

T 3/2
e−E/T dT . (7)

The aim of the present paper is to address the following two basic questions
concerning the thermal model: (1) Is the available photon spectrum (I (ε)) compat-
ible with a thermal interpretation, i.e., can the observed I (ε) be fully explained by
a non-negative ξ (T )? and (2) If the answer to (1) is yes, what is the actual form
of ξ (T ) for that particular form of I (ε)? One way to see whether an entire I (ε),
or even part of it, is compatible with a thermal model for the emission process, is
to test whether the corresponding F̄(E) obtained by solving Equation (6) satisfies
criteria arising from Equation (7), making allowances for the data-induced noise.
One such test is the “derivative test” for thermality found by Brown and Emslie
(1988). This follows directly by differentiating Equation (7) (with both sides di-
vided by E) i times and states that an electron spectrum (F̄(E)) is compatible with
a purely-thermal interpretation if and only if the quantity F̄(E)/E is “completely
monotonic,” i.e. its i th derivative has sign (−)i at all E . This approach has a techni-
cal limitation. Equation (6) can be solved by using regularization techniques (Piana,
1994; Kontar et al., 2004) but derived electron spectra are affected by noise in the
photon spectra used. Successive derivatives in the thermality test therefore have
rapidly escalating errors due to the instability of numerical differentiation. It fol-
lows that the computation of only the first two or three orders of derivative is reliable
(Emslie, Coffey, and Schwartz, 1989), with the higher-i terms in the “derivative
test” too noisy to be useful. On the other hand, we can be confident that any F̄(E)
clearly failing the “derivative test” at a high confidence level, for given noise, can be
ruled out as entirely due to a thermal distribution with an everywhere non-negative
ξ (T ). However, even if the F̄(E) does pass the “derivative” test, this itself does not
tell us the (non-negative) form of ξ (T ) to which F̄(E) corresponds. Therefore, in
principle, a much more effective technique would be to solve Equation (7), where
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F̄(E) is obtained by solving Equation (6), thus describing the ξ (T ) corresponding
to an observed photon spectrum: if ξ (T ) ≥ 0 for all T , then the photon spectrum
can be reliably interpreted according to a thermal model for the bremsstrahlung
emission; if ξ (T ) < 0 for some temperature interval, then at least part of the emis-
sion is certainly non-thermal. Furthermore, the knowledge of possible features in
such reconstructed form could yield important information on plasma heating and
conduction processes (Brown, 1974; Brown, Melrose, and Spicer, 1979; Gabriel,
1992). In recent years, this inversion problem has achieved an unprecedented level
of importance because of the high-resolution photon spectra (�ε � 1 keV) ob-
tained from the RHESSI mission (Lin et al., 2002). Combined with optimization of
computational methods for regularized solutions of the ill-posed inverse problem
involved (Craig and Brown, 1986; Johns and Lin, 1992; Thompson et al., 1992;
Piana, 1994; Piana et al., 2003; Massone et al., 2003; Kontar et al., 2004, 2005)
it is now possible to infer mean source electron spectra (F̄(E)) (see Equation (6))
with which specific physical source models can be compared (Brown, Emslie, and
Kontar, 2003).

A basic technical difficulty in the reconstruction of ξ (T ) is due to the fact that
solving the second inverse problem (7) is extremely problematic. Simple changes of
variables reduce this problem to a Laplace transform inversion problem with noisy
data. There is a vast literature (Davies and Martin, 1979; Varah, 1983; Essah and
Delves, 1988) showing that this problem is intrinsically highly pathological, due to
the very broad filtering action of the Fredholm–Laplace integral kernel (compared
to that in the basic bremsstrahlung inverse problem (6), which is of Volterra type and
not severely filtering). Several regularization methods (McWhirter and Pike, 1978;
Bertero, Brianzi, and Pike, 1985; Brianzi and Frontini, 1991) have been introduced
to handle this inversion by reducing the unphysical oscillations due to the presence
of noise. For all of them, two considerations are mandatory: first, that, as stated by
Davies and Martin (1979) “[in the Laplace inversion problem with noisy data] no
single method gives optimum results for all purposes...,” and therefore no general
method exists which is effective at the highest level for all physical situations and
all kinds of data; second, that, whatever method is applied, even with very accurate
data, only a coarse resolution will be achieved in the recovered solution (Bertero,
Brianzi, and Pike, 1982).

Most inversion methods for the real Laplace transform have been formu-
lated within the framework of regularization theory for ill-posed inverse prob-
lems (Bertero, 1989). At the core of these approaches, there is the search for an
optimal trade-off between stability against unphysical oscillations and accurate re-
producibility of the data. Such an optimization result is obtained either by fixing a
real positive regularization parameter in Tikhonov-like methods (Tikhonov, 1963)
or by applying some stopping rule to iterative procedures. However, the present
application is particularly challenging owing to the particular nature of the solar
spectral data involved here. Typical solar F̄(E) are characterized by a large dynamic
range (at least three orders of magnitude for around one order of magnitude in the
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E range) and, more significantly, the corresponding ξ (T ) have completely different
forms at low and high T : at small T , a near-thermal (δ function) component which
differs from zero only in a small T range (narrow support); at high T , a mono-
tonic component spread over a large interval. A consequence of this complexity in
the source function is that regularization approaches may lose some (or most) of
their effectiveness. For example, the reconstruction of ξ (T ) at low T with classical
Tikhonov regularization may correctly reproduce the location of the temperature
peak but typically presents ringing effects whose negative components, which are
numerical artefacts, might suggest that the spectrum is not thermally interpretable.
Negative ringing can be eliminated by applying a reconstruction method with a
positivity constraint. However, such an approach is not effective at recovering the
high-temperature part of ξ (T ), which has a power-law-like behavior and requires
regularization methods with more smoothing power. To deal with these kinds of dif-
ficulty, in the present paper, we utilize the following approach: an iterative scheme
with a positivity constraint is applied for the inversion of the low-energy part of
F̄(E), in order to eliminate unphysical ringing effects with negative oscillations
in the reconstruction of the part of ξ (T ) characterized by a narrow support; then,
a first-order Tikhonov regularization method is applied for the inversion of the
high-energy part of F̄(E), where an appropriate boundary condition constrains the
reconstructed ξ (T ) to behave well (i.e., with a slope compatible with the spectral
index of the photon data) at high T . The two reconstructed ξ (T ) are then connected
together noting that the connection temperature is easily determined by the T value
where the thermal ξ (T ) goes to zero, i.e. the high-T limit of the narrow support of
the thermal ξ (T ). We observe that, as far as the inversion of the low-energy part of
F̄(E) is concerned, the use of the positivity constraint in the inversion makes the
thermality test based on the verification that the reconstructed ξ (T ) is positive at all
T , inappropriate, since positivity is forcefully imposed in the inversion procedure.
Therefore, for this inverse problem, the compatibility between the data and the ther-
mal model is tested by checking whether the residuals in F̄(E) corresponding to the
ξ (T ) recovered by exploiting the positivity constraint are statistically acceptable.

The plan of the paper is as follows. In Section 2 the regularization methods for the
reduction of the numerical instability of the problem are introduced. In Section 3,
we test these regularization approaches in some significant synthetic cases. Section
4 applies the method to actual RHESSI photon spectra, and our conclusions are
offered in Section 5.

2. Regularization Methods

We could in principle proceed directly from Equation (7) to see whether some F̄(E)
could be wholly thermal in origin if we had a completely reliable inversion method:
given a data vector F̄(E), a wholly thermal interpretation of it is possible if and
only if the ξ (T ) obtained by the inversion method has no statistically significant
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negative values over any range of temperature (T ). Our aim here is to address this
problem by means of two numerical algorithms based on regularization theory for
ill-posed inverse problems, keeping in mind that the effectiveness of any regularized
inversion approach in the present case is much weaker than for most other linear
inverse problems due to the extreme numerical instability of the Laplace problem,
with its very broad kernel. A quantitative estimate (Golub and van Loan, 1996) for
the instability of linear equations like Equation (7) is given in terms of the condition
number (C) of the kernel (cross-section) matrix by

�solution ≤ C�data, (8)

where �data is a norm of the relative error on the data and �solution is a compatible
norm of the propagated relative error on the solution. It can be shown (Craig and
Brown, 1986, Table 7.1; Piana, Brown, and Thompson, 1995) that, for typical solar
data parameters, the condition number associated with the (Fredholm) Equation
(7) is of the order of 1010, which is much bigger, for similar parameters than
the condition number, around 103, associated with the (Volterra) bremsstrahlung
spectrum to electron spectrum inversion problem (6) (Piana and Brown, 1998).
The actual consequences of ill-conditioning are highly significant. A regularization
algorithm essentially expresses the approximate smoothed solution as a truncated
linear sum of some basis functions. In the basic bremsstrahlung spectrum inversion
problem Equation (6), F̄(E) can be expressed in terms of around ten basis functions
for typical noise in the case of a data vector with around 100 points, while in the
differential emission measure inversion problem (Equation (7)) we find that only
two, or at most three, basis functions can be meaningfully included in the expansion
of ξ (T ). Therefore, in the recovery of ξ (T ) it is necessary to introduce much more
severe constraints than the one adopted in the F̄(E) inversion procedure described,
for example, in Piana et al. (2003). Even incorporating these constraints, it will be
impossible to achieve a temperature resolution anywhere nearly comparable with
the spectral resolution with which F̄(E) can be reconstructed through the solution
of the bremsstrahlung Equation (6) (cf. the analysis of the temperature resolution
problem in Craig and Brown, 1986, pp. 100 – 120).

Adopting the change of variable y = 1/T , Equation (7) becomes

K
n̄V F̄(E)

E
=

∫ ∞

0
f (y) exp(−Ey) dy, (9)

where K = √
πme/8 = 1.89 × 10−14 gm1/2 = 4.73 × 10−10 keV1/2 cm−1 s and

f (y) (cm−3 keV−1/2) is defined as

f (y) = ξ (1/y)

y1/2
, (10)

with ξ (T ) in units of cm−3 keV−1. Equation (9) involves a continuous representation
of the model ( f (y)) and of the data (F̄(E)), while real data are discrete, truncated,
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and affected by measurement and systematic noise. In reality, therefore, the situation
is described by the (finite rank linear) operator L:X → Y such that

(L f )n =
∫ ∞

0
f (y) exp(−En y) dy, n = 1, . . . , N , (11)

where the {En}N
n=1 are the sampled electron energies, X is the functional space

containing the solution, and Y the Euclidean space containing the data. Then our
problem is to solve

L f = g, (12)

with data vector g in Y having components

gn = K
n̄V F̄(En)

En
, n = 1, . . . , N . (13)

As already stated, Equation (12) is a strongly ill-conditioned linear problem and
the only way to obtain a realistic approximate solution in the presence of noise
is some reconstruction technique based on regularization theory for linear inverse
problems. One approach is the first-order Tikhonov method (Tikhonov, 1963; Craig
and Brown, 1986), which solves the minimization over f of

‖L f − g‖2
Y + λ‖ f ′‖2

X = minimum, (14)

where λ is the (real positive) regularization parameter. It can be proved (Piana,
Brown, and Thompson, 1995) that under boundary conditions

f (0) = 0 (15)

and

lim
y→∞ f ′(y) = 0 (16)

the analytical solution of Equation (14) is

fλ(y) =
N∑

k=1

σk

σ 2
k + λ

(g, vk)Y uk(y), (17)

where the σk and vk are respectively the eigenvalues and eigenvectors of the matrix

Gnm =
∫ ∞

0
φ′

n(y)φ′
m(y) dy, (18)

φn(y) = 1

E2
n

(1 − e−En y) (19)

and

uk(y) = 1

σk

N∑
n=1

(vk)nφn(y). (20)
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For this problem, first-order regularization is more effective than zero-order
regularization for two basic reasons. First of all, it prescribes a bound on the first
derivative of the regularized solution which, in this case of large numerical oscilla-
tions, is a sensible thing to do. Second, in this particular implementation, condition
(15) constrains the regularized solution to behave well at y = 0 (T → ∞), thus
improving the restoration accuracy for ξ (T ) at high T . It is also true, however, that
condition (16) has no physical basis, and hence may yield artefacts at low T .

The main disadvantage of using Tikhonov regularization is that solutions with
negative components can result from noisy data. In particular, in the reconstruction
of the low-temperature component of ξ (T ), typically characterized by a very narrow
support, an effective method would allow us to constrain the restored solution to be
positive, thus avoiding unphysical ringing effects due to the presence of noise on the
data. The introduction of such a constraint (Piana and Bertero, 1996) has the effect of
increasing the resolution power of the inversion approach, allowing reconstruction
of more details in the source function. The method with positivity applied in this
paper is the projected-Landweber method, first formulated by Lagendijk, Biemond,
and Boekee (1988) for the image restoration problem. The mathematical properties
of this method are discussed, for example, by Eicke (1992) and an accelerated
version has been provided by Piana and Bertero (1997). We first consider the
discretized version of Equation (12)

g = Lf (21)

where f comes from the sampling of (10) and L is the matrix with entries

Lmn = exp(−En ym) δy (22)

where the ym , m = 1, . . . , M are uniformly sampled and δy is an appropriate inte-
gration weight. The projected-Landweber method provides reconstructions of f (y)
(and therefore of ξ [T ]) by optimally stopping the iteration

fk+1 = P+(fk + τLT(g − Lfk)), f0 = 0, (23)

where τ is a relaxation parameter, LT is the transpose matrix of L, and P+ sets to
zero all the negative components at each iteration.

As already stated in Section 1, the regularization effects on the approximate
solutions provided by Tikhonov first-order regularization and by the projected-
Landweber method can be obtained by fixing λ in Equation (17) and the iteration
number in Equation (23). To this purpose, many criteria have been introduced
(Davies, 1992); here we adopted the same approach as in Piana et al. (2003), based
on the analysis of the regularized cumulative residuals. For example, in the case of
first-order Tikhonov method, we consider the function

Sλ(k) = 1

k

k∑
i=1

rλ
i , k = 1, . . . , N (24)
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where rλ
i is the i th normalized regularized residual corresponding to the regular-

ized ξ (T ). For completely uncorrelated noise, the normalized cumulative residuals
exhibit a random walk with expected deviation 1/

√
k. In Equation (24), the pres-

ence of the regularization parameter increasingly correlates the rλ
i for increasing

values of λ. Therefore, an optimal criterion to fix λ is to look for the largest value
of λ such that |Sλ(k)| is bounded by 3/

√
k. An analogous procedure is followed for

stopping the projected iterations, whereby, in this case, the regularization parameter
is represented by the iteration number.

3. Simulations

In this section, we wish to test the effectiveness of the regularization approach as
introduced in the previous section. In particular, in Section 3.1 we describe the case
of a power law with a low-energy cutoff showing that if the mean electron spectrum
is sampled starting from energies greater than the cutoff, the reconstruction is
rather accurate (in fact, the problem becomes that of recovering a pure power law
in a limited domain), while the reconstruction dramatically fails if the minimum
sampled energy is smaller than the energy cutoff, in accordance with the fact that a
power law with a low-energy cutoff is not compatible with thermal bremsstrahlung
emission. Then, in Section 3.2, the temperature resolution achievable by the method
is discussed, in Section 3.3, the performance of the method in reconstructing power
laws is tested and, finally, in Section 3.4, a realistic form of F̄(E) obtained by
regularized inversion of a synthetic photon spectrum is considered.

3.1. COMPATIBILITY TEST

We want to verify whether an F̄(E) reconstructed from photon data (I (ε)) can be
interpreted as consistent with a purely thermal model. The “derivative test” of Brown
and Emslie (1988) provides a possible approach, but does not yield information on
the temperature structure of the source. A more informative approach is to apply
a reconstruction method and to check if the reconstructed ξ (T ) is non-negative for
all T . As an example, let us consider the case of a mean source electron spectrum

F̄(E) ∝
{

E−δ E ≥ Ec

0 E < Ec,
(25)

with Ec a low-energy cutoff. Before performing the inversion, however, we discuss
some informative analytic aspects of Equation (25) in relation to the general ex-
pression Equation (7) for F̄(E) from a purely thermal source, which we rewrite,
ignoring constant factors, as

F̄(E) ∝ E
∫ ∞

0

ξ (T )

T 3/2
e−E/T dT . (26)
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First it is obvious that if ξ (T ) is greater than zero over any T interval then the
corresponding F̄(E) is never zero at any E . Thus, the F̄(E) in Equation (25) cannot
be purely thermal (it clearly fails the derivative test at E = Ec). Second, we note
that for a pure power law, ξ (T ) ∝ T −α at all T with α constant, the resulting F̄(E)
is proportional to E−α+ 1

2 at all E . Consequently, for α = δ+ 1
2 a pure (untruncated)

power law ξ (T ) predicts F̄(E) in Equation (25) perfectly in the range E ≥ Ec but
completely contradicts it in the range E < Ec. Thus, a thorough thermality test
must be applied to all E ; failure (within the allowed uncertainties) at even one
value of E is enough to rule out a purely thermal model.

A somewhat surprising result here is that a wholly-thermal model is ruled out
by the form of F̄(E) at low rather than at high energies. We also emphasize that the
power law relation between ξ (T ) and F̄(E) only holds (at E ≥ Ec) for a complete
power law ξ (T ). If ξ (T ) is only a power law over some finite range, say (T1, T2),
the corresponding F̄(E) is not a power law at any E but rather, with x = T/E ,

F̄(E) ∝ E−α+1/2
∫ T2/E

T1/E
x−α−3/2e−1/x dx . (27)

We now show that application of our inversion method to data Equation (25) agrees
well with these analytic results.

For the inversion, the data (25) is discretized according to uniform sampling
starting from a minimum sampled energy (Emin), realistic Poisson noise is added
to the corresponding photon spectrum and errors on F̄(E) are generated by invert-
ing the noisy I (ε). We applied the first-order Tikhonov inversion method for two
possible experimental situations concerning the relative values of the pair Ec, Emin,
and for δ = 2 with the results shown in Figure 1. When Ec ≤ Emin (i.e., the cutoff
is not sampled), a stable differential emission measure is restored. There are some
slight, long-wavelength oscillations in the recovered ξ (T ) of roughly the width
of the kernel but the mean temperature spectral index is close to the theoretical
value α = 2.5. On the other hand, when Emin < Ec (and so the cutoff is sampled),
the reconstruction contains large negative ranges and is absolutely unphysical as
expected. This behavior is consistent with the fact that a mean source electron
spectrum with any cutoff is incompatible with a purely thermal interpretation of
the emission (since any Maxwellian contains electrons of all E).

3.2. TEMPERATURE RESOLUTION

Heuristically, the effective temperature resolution achievable by our inversion
method can be assessed by reconstructing ξ (T ) forms using the F̄(E) correspond-
ing to input δ functions ξ (T ) ≈ δ(T − T0). The resulting reconstructed forms of
ξ (T ) are characterized by finite full widths at half maximum (FWHM), which es-
timate the resolution achievable around T = T0. Therefore, for inverse problems
the resolution power depends on the reconstruction method. In Table I, the FWHM
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Figure 1. Reconstruction of the differential emission measure corresponding to an electron spectrum
in the form of a power law with a low-energy cutoff, for two different values of the cutoff energy (Ec)
and of the minimum sampled energy (Emin). The reconstruction method is first-order Tikhonov regu-
larization with boundary conditions. If Emin ≥ Ec, the sampled electron spectrum does not include a
cutoff and ξ (T ) is faithfully recovered (dotted line). If Emin < Ec, the sampled electron spectrum does
include a cutoff and so is not compatible with a thermal interpretation. In this case, the reconstruction
of ξ (T ) is unphysical (dashed line). The solid line is proportional to T −5/2 in the range 10 – 100 keV.

values realized through application of the two reconstruction methods discussed in
Section 2 to F̄(E) spectra are given for different values of T0. The averaged elec-
tron spectra are obtained by inverting the corresponding photon spectra (affected
by realistic Poisson noise) and contain 50 points in the energy range 1 – 50 keV.

TABLE I

Full widths at half maximum (FWHM) for the reconstruction of δ functions peaked at different
temperatures.The maximum and the centroid values of T corresponding to the reconstructed ξ (T )
are also given. The inversion methods are first-order regularization with boundary conditions and
projected-Landweber method with positivity.

Input Tmax 〈T 〉 FWHM Tmax 〈T 〉 FWHM

(T0, keV) (Tikhonov) (Tikhonov) (Tikhonov) (positivity) (positivity) (positivity)

2.5 2.3 2.6 1.5 2.5 2.5 0.8

3.5 2.8 3.3 2.0 3.6 3.6 0.9

4.5 3.4 4.6 3.3 4.6 4.6 1.1

5.5 3.9 5.7 4.2 5.6 5.6 0.9

6.5 4.5 7.1 5.6 6.6 6.6 1.5

7.5 5.2 8.5 7.3 7.6 7.6 1.3

8.5 6.1 9.0 9.4 8.3 8.5 2.6

9.5 7.3 9.6 11.8 9.6 9.7 2.3

10.5 7.9 10.5 12.3 10.6 10.8 2.3

11.5 8.6 11.6 13.2 11.6 11.6 2.4
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Table I also contains values for the “centroid” temperature of the reconstructed
distributions, defined by 〈T 〉 = ∫

T ξ (T ) dT/
∫

ξ (T ) dT . In the case of first-order
regularization, these 〈T 〉 are 10% or so higher than the Tmax at which the recovered
ξ (T ) peaks because the ξ (T ) are skewed, and they compare well with the single
input T0 of the originally-assumed δ functions. In the case of the iterative projected-
Landweber method, 〈T 〉 and Tmax coincide in most cases and are very close to the
theoretical T0.

When first-order regularization is applied in the case of multi-thermal sources,
the FWHM values given in Table I may be overly optimistic estimates of the
temperature resolution particularly when trying to separate narrow features. As an
example, we consider reconstructions of two δ functions with both methods, where
the first is peaked at T1 = 2.5 keV and the second is peaked at T2 = 10, 7, 5, 4.5
keV, respectively – see Figure 2. Also in this case, for the reconstruction, we
considered F̄(E) sampled in the energy range 1 – 50 keV. We note that the use of

Figure 2. Reconstructions of two δ functions (solid line) by means of first-order regularization
(dashed) and projected-Landweber method (dotted). The averaged electron spectrum contains 50
points uniformly sampled in the range 1 – 50 keV and is obtained by inverting the corresponding pho-
ton spectrum with realistic Poisson noise added: (a) T1 = 2.5 keV, T2 = 10 keV; (b) T1 = 2.5 keV,
T2 = 7 keV; (c) T1 = 2.5 keV, T2 = 5 keV; (d) T1 = 2.5 keV, T2 = 4.5 keV.
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the positivity constraint increases the resolution limit as explained for example in
Piana and Bertero (1996) by means of arguments based on the analytic continuation
principle. Furthermore, the ξ (T ) reconstructed by means of the Tikhonov method
have unphysical negative components. We conclude that for the recovery of the
low-temperature part of the differential emission measure, the projected algorithm
is significantly more effective. We also observe that the energy range 1 – 50 keV,
where F̄(E) was sampled for this inversion, is in some sense optimal, since it
always includes the peak temperatures to be recovered. In real F̄(E), energies up
to typically ten keV must be avoided owing to the presence of (or problematical
correction for) lines of non-bremsstrahlung origin or to systematic errors introduced
by the hardware. In other words, a typical experimental situation is that F̄(E)
is inverted from electron energies greater than the temperatures involved in the
thermal process. In order to study the effect of this on the inversion method, we
considered the test shown in Figure 3. The electron spectrum corresponding to
an isothermal ξ (T ) with T0 = seven keV is inverted for different electron energy
sampling ranges: 2 – 20 keV (solid), 2 – 7 keV (dashed), 7 – 20 keV (dotted), and
20 – 70 keV (dot-dashed). We found that if T0 is higher than the energy range
considered, the reconstruction preserves the symmetry of the δ function (so that Tmax

and 〈T 〉 more or less coincide) but the peak temperature is notably overestimated
(almost 20%). If T0 is smaller than the sampled energies (which is the realistic
situation), the reconstruction is rather skewed (in such a way that Tmax is bigger
than 〈T 〉, as opposed to the case of Tikhonov regularization), presents a widened
FWHM and the peak temperature is slightly underestimated: for example, if the
selected range is 20 – 70 keV, the reconstructed Tmax is ≈ 5% smaller than the true
one.

Figure 3. Reconstruction of a δ function peaked at T0 = seven keV when the corresponding F̄(E)
is sampled over different electron energy ranges: 2 – 20 keV (solid); 2 – 7 keV (dashed); 7 – 20 keV
(dotted); 20 – 70 keV (dot-dashed). The reconstruction method is the projected-Landweber method
with positivity.
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3.3. POWER LAWS

The situation is notably different for the recovery of the high-temperature part
of ξ (T ). In this range, the typical behavior is close to a power law T −α, which
generates a power law shape E−δ in the corresponding high-energy part of F̄(E)
(the approximate relation α ≈ δ + 1/2 has been already discussed in Section 3.1).
In this case, the small y (high T ) boundary condition (15) plays a constructive role
in the recovery of ξ (T ) and makes first-order regularization more effective than
the projected iterative scheme (in this case, the action of the positivity constraint is
insignificant, since the ξ (T ) to be recovered has a wide support i.e. is everywhere far
from zero and possible residual oscillations do not induce negative components).
A test example is represented in Figure 4, where we invert the spectrum F̄(E)
corresponding to the input form

ξ (T ) ≈ T −5/2. (28)

This electron spectrum has been obtained by inverting the corresponding photon
spectrum given by Equation (6) with the addition of realistic Poisson noise. F̄(E)
in Figure 4(a) has been uniformly sampled with N = 140 points in the range 50 –
189 keV (in the case of power laws the sensitivity of the reconstruction qualities on
the energy range adopted for the inversion is not very significant) and inverted in
Figure 4(b) by means of the first-order regularization method and for the projected-
Landweber method. The results of this computation clearly show that first-order
regularization with the boundary condition (15) is particularly effective in this
case. We finally note that for notably larger values of δ a certain deterioration
of the reconstructions may occur, due to the fact that λ is a global regularization
parameter which works in a less effective way when the function to reconstruct

Figure 4. Inversion of F̄(E) corresponding to the case ξ (T ) ≈ T −5/2: (a) F̄(E) uniformly sampled
with N = 140 points in the energy range 50 – 189 keV; (b) theoretical ξ (T ) (solid), reconstruction
given by first-order regularization (dashed), reconstruction given by the projected-Landweber method
(dotted).



REGULARIZED RECONSTRUCTION OF THE DIFFERENTIAL EMISSION MEASURE 75

is steep. However, this deterioration can be reduced by means of an appropriate
rescaling of the power law (see Kontar et al., 2005).

3.4. MORE REALISTIC SPECTRA

A mean electron flux spectrum reconstructed from a real photon spectrum is often
assumed (Holman et al., 2003) to comprise an isothermal component at low electron
energies plus a power law behavior at high energies. A simple example is given by
the model electron spectrum (with T, E in keV)

F̄(E) = 100 T −3/2
0 Ee− E

T0 + �(δ + 1)

100

(
E
50

)−δ

; (29)

application of the derivative test (Brown and Emslie, 1988) shows that this spectrum
is consistent with a wholly thermal source; indeed the corresponding differential
emission measure is

ξ (T ) = 100 δ (T − T0) + 0.5(50)δ−1T −(δ+0.5). (30)

We discretized the F̄(E) form (29) with a uniform one keV sampling from
1 to 250 keV with T0 = 4 keV and δ = 2. We then generated the corresponding
photon spectrum (I (ε)) using an exact (isotropic) cross-section and added random
Poisson noise, resulting in corresponding noise in F̄(E). Figure 5(a) shows the
resulting simulated F̄(E), while Figure 5(b) contains the restorations provided by
the two methods. Both reconstructions present notable unphysical artefacts, which
are essentially due to the fact that neither method is able to fully restore the two
completely different behaviors of the source function at low and high T . Therefore,
we considered an approach whereby the two different inversion methods are applied
one to the low-energy and one to the high-energy part of the electron spectrum
separately. More precisely, the projected-Landweber method is applied to F̄(E) in
the low-energy range (here we used 2 – 36 keV, which approximately corresponds
to the range where the spectrum is optimally fitted by the isothermal component).
On the other hand, first-order Tikhonov regularization with boundary conditions
is applied to F̄(E) in the high-energy range (here we used 55 – 204 keV, which
approximately corresponds to the range where the spectrum is optimally fitted by a
power law). The two reconstructed ξ (T ) are connected together at the temperature
where the thermal peak goes to zero, and it is plotted in Figure 5(c), while Figure 5(d)
shows that the regularized cumulative residuals (24) are statistically reliable for the
chosen value of the iteration number and of the Tikhonov regularization parameter.

4. Application to RHESSI Data

In order to address the analysis of real spectra provided by RHESSI, we first need
to check the compatibility between condition (15) and the asymptotic behavior of
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Figure 5. Inversion of F̄(E) corresponding to ξ (T ) given in Equation (30) for T0 = 4 keV and δ = 2:
(a) electron spectrum with N = 250 sampled energies in the range 1 – 250 keV; (b) theoretical ξ (T )
(solid) with the reconstructions given by first-order regularization (dashed) and projected-Landweber
method (dotted); (c) theoretical ξ (T ) (solid) and reconstruction (dashed) obtained by inverting the
low-energy part of the electron spectrum with the projected-Landweber method and the high-energy
part with first-order Tikhonov regularization and by connecting the two restorations; (d) cumulative
regularized residuals (solid) for the method with positivity (upper panel) and Tikhonov regularization
(lower panel) compared to the statistical bound ±3/

√
k (dashed).

the recorded photon spectrum at high energies. Such an issue can be addressed by
simple integral computations showing that, if a function F(t), for t → 0, is

F(t) ≈ Atβ (31)

with β > −1, then its Laplace transform (LF)(s), for t → ∞, is

(LF)(s) ≈ A
�(β + 1)

sβ+1
, (32)

with

�(z) =
∫ ∞

0
e−t t z−1 dt. (33)
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Therefore, condition (15) is compatible with the mean source electron spectrum
with an asymptotic (E → ∞) electron spectral index δ > 0 (corresponding to a
photon spectral index γ > 1).

The reconstruction procedure described in Section 3.4 has been applied to
three photon spectra observed by RHESSI corresponding to three different flares.
Figure 6(a) shows the photon spectrum corresponding to the August 21, 2002 flare in
the time interval 01:38:44 – 01:39:04 UT, while Figure 6(b) shows the correspond-
ing averaged electron spectrum obtained by using zero-order Tikhonov regulariza-
tion as described by Piana et al. (2003). The low-energy part of this spectrum (11 –
24 keV) has been inverted by means of the Landweber iterative scheme with positiv-
ity for 105 iterations, while the high-energy part (50 – 189 keV) has been inverted by
using first-order Tikhonov regularization with boundary conditions (again the two

Figure 6. August 21, 2002 flare recorded by RHESSI in the time interval 01:38:44 – 01:39:04 UT:
(a) photon spectrum; (b) mean source electron spectrum reconstructed by zero-order Tikhonov regu-
larization; (c) reconstruction obtained by inverting the low-energy part of the electron spectrum with
the projected-Landweber method and the high-energy part with first-order Tikhonov regularization
and by connecting the two restorations; (d) cumulative regularized residuals (solid) for the method
with positivity (upper panel) and Tikhonov regularization (lower panel) compared to the statistical
bound ±3/

√
k (dashed).



78 M. PRATO ET AL.

electron energy ranges correspond to the intervals where F̄(E) is optimally fitted by
a thermal component and a power law respectively). The two reconstructed ξ (T ) are
connected together and plotted in Figure 6(c), while the cumulative residuals con-
tained in Figure 6(d) show that the reconstruction is statistically reliable. At small
T , ξ (T ) presents a peak at T ≈ 2.9 keV, FWHM ≈ 1.5 keV and 〈T 〉 ≈ 2.8 keV (the
temperature provided by best-fitting F̄(E) is 2.6 keV). In order to study the com-
patibility of this spectrum with a single-temperature thermal interpretation, we pro-
duced a synthetic F̄(E) corresponding to a δ function peaked at 2.9 keV and inverted
it with the same projected-Landweber method applied to the same electron energy
range. The restoration presented a FWHM of around 1.5 keV showing that this flare
can be reliably interpreted according to an isothermal model. At higher tempera-
tures, ξ (T ) presents a dip between 60 and 70 keV and an asymptotic power law-like
behavior with α ≈ 2.8 (this value is in accordance with the fact that the asymptotic
electron spectral index is δ ≈ 2.3). In order to study the statistical relevance of
the non-monotonic structure in the 60 – 70 keV temperature range, in Figure 7 we
constructed the confidence strip for the regularized ξ (T ) (Piana, 1994; Piana et al.,
2003) by means of repeated inversions using different realizations of the data set and
by superimposing the corresponding regularized solutions. The strip results to be
notably large in correspondence with the dip, thus allowing to interpret this structure
in terms of a ‘plateau’, a broken-power-law or even a simple power law behavior.

An analogous procedure has been applied for the analysis of the photon spec-
trum in the time interval 09:57:00 – 09:57:20 UT of the November 3, 2003 flare
(see Figure 8(a) for the photon spectrum and Figure 8(b) for the inverted aver-
aged electron spectrum). F̄(E) has been inverted with the positivity method in
the 13.5 – 40.5 keV range and with first-order regularization in the 56.5 – 180.5 keV
range. The reconstructed ξ (T ) in Figure 8(c) presents a peak at T ≈ 3.1 keV with

Figure 7. The confidence strip for the regularized ξ (T ) at high T , corresponding to the August
21, 2002 flare in the time interval 01:38:44 – 01:39:04 UT. The strip has been obtained by repeated
inversions of F̄(E) in Figure 6(b) using 20 different random realizations of this data set. The inversion
method is first-order Tikhonov regularization.
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Figure 8. November 3, 2003 flare recorded by RHESSI in the time interval 09:57:00 – 09:57:20 UT:
(a) photon spectrum; (b) mean source electron spectrum reconstructed by zero-order Tikhonov regu-
larization; (c) reconstruction obtained by inverting the low-energy part of the electron spectrum with
the projected-Landweber method and the high-energy part with first-order Tikhonov regularization
and by connecting the two restorations; (d) cumulative regularized residuals (solid) for the method
with positivity (upper panel) and Tikhonov regularization (lower panel) compared to the statistical
bound ±3/

√
k (dashed).

FWHM ≈ 1.4 keV and 〈T 〉 ≈ 2.8 keV (the best-fitting temperature is 3.2 keV). As
for the previous flare, in this case, a single-temperature interpretation of this part
of the spectrum is acceptable. At higher T there is a feature in the range 70 –
80 keV, which is more pronounced than the one in the August 21, 2002 flare (al-
though, also in this case, the confidence strip at these temperatures is very wide).
The asymptotic α is around 3.1, which must be compared with an asymptotic δ in
F̄(E) of around 2.7 (once more, the asymptotic relation α ∼ δ + 0.5 is satisfied).
The cumulative residuals in Figure 8(d) show that these results are statistically
reliable.

Things are notably different in the case of the photon and electron spectra in
Figure 9(a) and (b), respectively, corresponding to the time interval 00:30:00 –
00:30:20 UT of the July 23, 2002 flare. This F̄(E) fails the derivative test at several
points in the low-energy range. We have computed the first five derivatives of
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Figure 9. July 23, 2002 flare recorded by RHESSI in the time interval 00:30:00 – 00:30:20 UT: (a)
photon spectrum; (b) mean source electron spectrum reconstructed by zero-order Tikhonov regular-
ization; (c) numerical third derivative of F̄(E)/E with corresponding statistical errors; (d) cumulative
regularized residual (solid) for the method with positivity (upper panel) in the case of 106 iterations
and Tikhonov regularization (lower panel) compared to the statistical bound ±3/

√
k (dashed).

F̄(E)/E and found failures of the test for different points in the second, third,
fourth, and fifth derivative. Figure 9(c) contains, for example, the third derivative,
which should be negative for a thermal spectrum, and which is in fact positive (with
statistical significance) at 16 and 19 keV. By applying the constrained-Landweber
method to F̄(E) at low energies (for example between 12 and 21 keV) we found
that the cumulative residuals never present the expected random walk, even for
huge numbers of iterations (the residuals in Figure 9(d), upper panel, correspond to
106 iterations). This behavior seems to suggest that a thermal interpretation of this
photon spectrum could be problematic, although we also observe that this photon
data set probably suffers a notable pulse pile-up, which may imply artefacts in
the reconstruction of F̄(E). For the high-energy part of the spectrum, first-order
regularization provides a power law-like ξ (T ) with α ≈ 2.7 at high T (δ for this
spectrum is around 2).
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5. Conclusions

The inference of differential emission measure functions (ξ (T )) from observed
photon spectra (I (ε)) with a realistic bremsstrahlung cross-section is substantially
more difficult than the single-step inversion analysis of Piana, Brown, and Thomp-
son (1995) based on an approximate Q. A proper procedure involves two inverse
problems. The first of these is the inversion of I (ε), through an exact solid-angle-
averaged bremsstrahlung cross-section kernel and a zero-order Tikhonov regular-
ization method, to obtain the mean source electron spectrum F̄(E). The second
uses an approach for inverting F̄(E), which involves the application of a projected
algorithm with positivity constraint in the inversion of the low-energy part of the
spectrum and of a first-order regularization method with boundary conditions in the
inversion of the high-energy part of the spectrum. The main findings are as follows:

– The approach correctly identifies certain properties of F̄(E) (such as bumps
or energy cutoffs) as being inconsistent with any physical ξ (T ) ≥ 0.

– The use of the positivity constraint allows us to obtain a satisfactory temper-
ature resolution in the recovery of δ functions, while the use of first-order
regularization with boundary conditions provides reliable reconstructions for
smooth forms such as power laws.

– Application of the method to observed RHESSI photon spectra has revealed
two cases in which the recovered ξ (T ) is spectrally consistent with a roughly
isothermal low-temperature plasma plus a very broad form of ξ (T ) at high
temperatures. In a third case, a spectrum from the July 23, 2002 flare, the recon-
struction method at low temperatures produces unacceptable large residuals.
This result is in accordance with the fact that the same spectrum fails to satisfy
the derivative test, which verifies the compatibility with a purely thermal inter-
pretation. Possible physical motivations for this behavior are still unclear and,
for example, may be related to the fact that this flare produced spectra which
deviate from a power law behavior in a manner consistent with nonuniform
ionization (Kontar et al., 2003). However, we also observe that the spectrum
used in our analysis suffers a notable pulse pile-up, which may imply artefacts
in the analysis results.

The availability of a reconstruction approach for addressing the difficult inverse
problem of restoring ξ (T ) from reconstructions of F̄(E) may have important con-
sequences in the analysis and interpretation of RHESSI spectra. In future research,
we will apply the method to study the influence of albedo effects on the modification
of the differential emission measure and to deduce important physical properties
on the thermal plasma from the reconstructed ξ (T ).
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