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Abstract We compare the ability of 11 differential emission measure (DEM) forward-
fitting and inversion methods to constrain the properties of active regions and solar flares
by simulating synthetic data using the instrumental response functions of the Solar Dynam-
ics Observatory/Atmospheric Imaging Assembly (SDO/AIA) and EUV Variability Experi-
ment (SDO/EVE), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI),
and the Geostationary Operational Environmental Satellite/X-ray Sensor (GOES/XRS).
The codes include the single-Gaussian DEM, a bi-Gaussian DEM, a fixed-Gaussian DEM,
a linear spline DEM, the spatial-synthesis DEM, the Monte-Carlo Markov Chain DEM,
the regularized DEM inversion, the Hinode/X-Ray Telescope (XRT) method, a polynomial
spline DEM, an EVE+GOES, and an EVE+RHESSI method. Averaging the results from
all 11 DEM methods, we find the following accuracies in the inversion of physical pa-
rameters: the EM-weighted temperature T fit

w /T sim
w = 0.9 ± 0.1, the peak emission measure

EMfit
p /EMsim

p = 0.6 ± 0.2, the total emission measure EMfit
t /EMsim

t = 0.8 ± 0.3, and the
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multi-thermal energies Efit
th /EMapprox

th = 1.2 ± 0.4. We find that the AIA spatial-synthesis,
the EVE+GOES, and the EVE+RHESSI method yield the most accurate results.

Keywords Sun: corona · Thermal analysis · Differential emission measure analysis ·
Methods

1. Introduction

A benchmark test of differential emission measure (DEM) analysis methods is timely since
the current capabilities from the Atmospheric Imaging Assembly (AIA: Lemen et al., 2012)
and the EUV Variability Experiment (EVE: Woods et al., 2012) onboard the Solar Dynamics
Observatory (SDO: Pesnell, Thompson, and Chamberlin, 2012) combined with simultane-
ous data from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI: Lin
et al., 2002) and the X-ray Sensor (XRS: Garcia, 1994) onboard the Geostationary Op-
erational Environmental Satellite (GOES) series now offer unprecedented opportunities to
design DEM algorithms that take advantage of comprehensive temperature coverage, high
spectral resolution, and high spatial resolution in resolving and discriminating complex tem-
perature structures in the solar corona. Another motivation for this study is the calculation
of accurate multi-thermal energies, compared with the previously used isothermal approxi-
mations, which is the subject of a recent major study on the global energetics of solar-flare
and coronal-mass-ejection (CME) events (Aschwanden et al., 2015).

The concept of DEM distributions and the ill-posed problem of the inversion from the
observed radiation of optically thin thermal emission produced by bremsstrahlung (free–
free), radiative recombination (free–bound) emission, and even bound–bound emission, has
been recognized early on (Craig and Brown, 1976; Judge, Hubeny, and Brown, 1997). It was
pointed out that systematic errors resulting from incomplete calculations of atomic excita-
tion levels and from data noise represent a fundamental limitation in DEM inversion (Judge,
2010). The inversion of simple synthetic Gaussian or rectangular DEMs was tested with
the emission measure loci method, which can retrieve the temperature width of a single-
peaked DEM (Landi and Klimchuk, 2010). Tests of isothermal DEMs with the Monte Carlo
Markov Chain (MC) method (Kashyap and Drake, 1998), including data noise and uncer-
tainties in the atomic data, revealed that the MC method cannot resolve isothermal plasmas
better than � log(T ) ≈ 0.05, and that two isothermal components cannot be resolved better
than � log(T ) ≈ 0.2 (Landi, Reale, and Testa, 2012). Tests on synthetic single-Gaussian
and multi-Gaussian DEMs with the regularized inversion technique yielded uncertainties of
� log(T ) ≈ 0.1 – 0.5 and a valid range of the retrieved DEM down to about a level of �1 %
of the DEM peak emission measure (Hannah and Kontar, 2012).

Most of the previously employed DEM methods use spatially integrated EUV and/or
soft X-ray fluxes as constraints, which, for SDO/AIA data, yields typically six flux values
that are used in the inversion of the DEM function (e.g. Aschwanden and Shimizu, 2013).
For SDO/EVE, a spatially integrated spectrometer with ≈1 Å spectral resolution, the data
include many tens of spectral lines across hundreds of spectral bins (Warren, Mariska, and
Doschek, 2013). However, these EUV-based methods are typically poorly constrained at
high temperatures (above log(T ) ≈ 7.3) due to the relative lack of EUV lines from solar-
abundant ions sensitive to these temperatures (e.g. Winebarger et al., 2012). Some more
recent DEM methods extend the high-temperature coverage by including GOES/XRS (War-
ren, Mariska, and Doschek, 2013; Warren, 2014) and/or RHESSI (Caspi, McTiernan, and
Warren, 2014; Inglis and Christe, 2014) X-ray data, enabling complete coverage of coronal
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temperatures from log(T ) � 6.3. Fluxes that are spatially integrated over a substantial area
of a flare or active region naturally contain many temperatures and thus can have arbitrarily
complex broadband DEMs.

A novel method consists of subdividing the observed space into small areas (called
macro-pixels or cells), down to the pixel size of the image, which are more likely to encom-
pass a narrower and simpler temperature distribution due to the smaller number of bright
structures that are intersected, and then to perform a DEM reconstruction in every macro-
pixel, while the total DEM of the entire flare area or active region can then simply be added
together. Such a spatial-synthesis method (SS) has been developed for SDO/AIA recently
(Aschwanden et al., 2013), and further developments are under way (Cheung et al., 2015).
In this article we conduct a benchmark test of a set of 11 different DEM forward-fitting and
inversion schemes, which include both types of total-flux and spatially synthesized DEM
methods, in order to compare and contrast their accuracy and precision. We perform this
test by creating realistic, but synthetic, 2D projected images of flaring loops at all wave-
lengths using a numerical simulation code; the simulated images are then used to construct
spatially integrated DEMs using the 11 schemes, and they are then compared to the true
DEM derived from the model input.

2. Data Simulation

2.1. Simulated Differential Emission Measure Maps

We simulate synthetic data of differential emission measure maps [EM(x, y,T )] as a func-
tion of the temperature [T ], in the form of spatial images in the (x, y) plane, sampled in
various temperature intervals [T ,T + �T ] that cover the EUV and soft X-ray wavelength
range in a temperature range of Te = 105 – 108 K. The simulated data aim to mimic loop
arcades of large flares with a complex multi-temperature structure.

The synthetic data cover a 512 × 512 pixel image with a pixel size of �x = 0.6′′ ≈
435 km, corresponding to the SDO/AIA pixel scale. The simulated images contain nloop =
10,100, or 1000 semi-circular flare loops that are randomly distributed along a neutral
line, which is centered at a given heliographic location (at longitude l0 = 45◦ and latitude
b0 = 30◦) and has a length of L0 = 200�x ≈ 0.125 solar radii, and is oriented with an
azimuthal angle α = 10◦ with respect to the East–West direction (x-axis); see an exam-
ple in Figure 1. The loops have a half-length that is randomly distributed within a range
of L = 20 – 200�x ≈ 10 – 100 Mm, and they have an apex temperature that is randomly
distributed within a logarithmic range of log(Tmax) = 6.0 – 7.3 K. The temperature profile
[T (s)] along the loops follows the hydrostatic approximation (Aschwanden and Tsiklauri,
2009). We have

T (s) = Tmax

[(
s

L

)(
2 − s

L

)]2/7

, (1)

with a minimum temperature of Tmin = 105 K at the footpoints. The electron density is
uniform along the loop and follows the Rosner–Tucker–Vaiana (RTV) scaling law (Rosner,
Tucker, and Vaiana, 1978),

ne = 8.4 × 105T 2
maxL

−1, (2)

which covers a range of ne ≈ 1.0 × 108 – 1.5 × 1011 cm−3 here.
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Figure 1 Simulated total emission measure maps [EM(x, y)] of the four models: A, the monolithic scenario
with ten loops with a width of 11 pixels; B, the intermediate scenario with 100 loops with a width of five
pixels; C, the nanoflare scenario with 1000 loops with a width of one pixel, and D, a dual-temperature popu-
lation model with a width of one pixel. The lower and upper limits of log(EM) of the color bar are indicated
in each panel. The x-axis and y-axis represent the distance from Sun center in units of solar radii.

We simulate four sets of images: Model A with a small number of n = 10 thick loops
(with a radius of r = 11 pixel) that may be typical for spatially resolved monolithic loops
(e.g. Aschwanden, Nightingale, and Boerner, 2007); Model B with a medium number of
n = 100 loops and an intermediate radius of r = 5 pixels; Model C with a large number of
n = 1000 very slender loop strands with a radius of r = 1 pixel that is typical for unresolved
nanoflare loop strands (e.g. Scullion et al., 2014); and Model D that contains n = 1000
loops in two different temperature regimes that form a double-peaked DEM that falls off
less steeply at the high-temperature tail of the DEM, while Models A, B, and C have a sharp
cutoff.

The four models are designed to represent realistic simulations of active regions in the so-
lar corona, regarding spatial structures, temperature distributions, and realistic electron den-
sities as obtained from the RTV scaling law (Rosner, Tucker, and Vaiana, 1978). In addition,
these four models represent different thermo-spatial patterns, being essentially isothermal in
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a single pixel with fully resolved loops (Model A), or inherently multi-thermal with spatially
unresolved strands (Model C), which cover both extremes (of fully resolved or spatially un-
resolved temperature structures) to test the capabilities of the different DEM inversion codes.
The thermo-spatial pattern matters mostly for pixel-based DEM inversion codes (such as the
spatial-synthesis code: Section 4.5), while all other codes tested here do not use any spatial
information in the DEM inversion. Therefore, we will learn whether or not the inclusion of
spatial information affects the accuracy of DEM reconstructions. One new DEM inversion
code that uses spatial information also has been designed recently (Cheung et al., 2015).

Each individual loop is uniformly filled with space-filling voxels [(x, y, z)] that have a
volume (�x)3, a unique electron temperature [T (x, y, z)], and electron density [ne(x, y, z)].
The pixelized data cube [EM(x, y, z, T )] is then integrated along the line-of-sight in the di-
rection of the z-axis in order to produce differential emission measure maps in each temper-
ature interval,

EM(x, y,T ) =
∫

n2
e(x, y, z, T )dz, (3)

which has the units of cm−5 K−1. Simulated total emission measure maps, integrated over
the temperature range T with units of cm−5,

EM(x, y) =
∫

EM(x, y,T )dT , (4)

are shown for all four cases in Figure 1. The temperature is discretized in a logarithmic
range of log(Te) = 5.00,5.05, . . . ,8.00 in 61 equidistant logarithmic steps with a width of
� log(T ) = 0.05 each. A total differential emission measure distribution [EMtot] integrated
over the entire volume is defined by

EMtot(T ) =
∫∫

EM(x, y,T )dx dy, (5)

and has the units of cm−3 K−1.

2.2. Simulation of AIA Flux Maps

The differential emission measure maps [EM(x, y,T )] are defined in an instrument-
independent way. In order to simulate observables, the simulated theoretical differential
emission measure [EM(x, y,T )] is then convolved with the instrumental response function
[Rλ(T ): DN s−1 cm5 per pixel] of a particular temperature filter, in order to obtain the ex-
pected flux maps [fλ(x, y): DN s−1],

fλ(x, y) =
∫

EM(x, y,T )Rλ(T )dT =
nT∑
k=1

EM(x, y,Tk)Rλ(Tk)�Tk, (6)

where nT is the number of temperature filters, and fλ are the observed fluxes in the coro-
nally dominated EUV wavelengths λ = 94,131,171,193,211,335 Å, in the case of the
SDO/AIA instrument. For the temperature integration we are using the discretized temper-
ature intervals � log(Tk), which are chosen in equidistant bins with a width of � log(Tk) =
log(Tk+1) − log(Tk) = 0.05. This way we obtain six simulated AIA images for which the
differential emission measure distribution [EM(x, y,T )] is exactly known from the theo-
retical model. We can then use these flux maps fλ(x, y), λ = 1, . . . ,6 to test the various
DEM inversion codes and methods. An example of six simulated AIA flux maps is shown
in Figure 2 (Model B).
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Figure 2 Simulated AIA flux maps [Fλ(x, y)] for the six AIA wavelengths. The simulation of Model B
includes 100 flare loops with a width of five pixels in a temperature range of Te = 1 – 20 MK. The lower and
upper flux limits of the color bar are indicated in each panel. The x-axis and y-axis represent the distance
from Sun center in units of solar radii.
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2.3. Multi-thermal Energy

The multi-thermal energy, which is the integral of all thermal energies integrated over each
temperature range [�Tk], is defined as

Eth =
∑

k

3kBV 1/2TkEM1/2
k . (7)

This expression can deviate substantially from the isothermal approximation (independent
of the DEM inversion method),

Eth,iso = 3npkBTpV = 3kBTp

√
EMpV , (8)

which assumes a narrow δ-like DEM distribution that can be characterized by the DEM
peak temperature [Tp] and DEM peak emission measure [EMp]. Separate calculations of
isothermal and multi-thermal energies based on the same DEM fitting method in ≈400
M- and X-class flares has shown that the multi-thermal energy exceeds the isothermal energy
by a factor of ≈14 in the statistical average (Aschwanden et al., 2015). A comparison with
these multi-thermal energies shows that our four models have conditions that are typical for
active regions, rather than for large flares.

3. Instrumental Response Functions

3.1. The SDO/AIA Response Functions

The AIA instrument onboard SDO started observations on 29 March 2010 and has since
then produced essentially continuous data of the full Sun with four 4096 × 4096 detectors
with a pixel scale of 0.6′′, corresponding to an effective spatial resolution of ≈1.5′′ (Lemen
et al., 2012). AIA contains ten different wavelength channels, three in white light and UV,
and seven EUV channels, of which six wavelengths (131, 171, 193, 211, 335, 94 Å) are
centered on strong iron lines (Fe VIII, IX, XII, XIV, XVI, XVIII), covering the coronal range
from T ≈ 0.6 MK to �16 MK. AIA records a full set of near-simultaneous images in
each temperature filter with a fixed cadence of 12 seconds. Instrumental descriptions can be
found in Lemen et al. (2012) and Boerner et al. (2012, 2014). The nominal AIA response
functions [Rλ(T )] are shown in Figure 3. We use the currently available calibration, which
was updated with improved atomic emissivities according to the CHIANTI Version 7 code,
distributed in the Solar SoftWare (SSW) on 13 February 2012. Although the response func-
tions of the AIA channels (with a full width of log (�T ) ≈ 0.2) are relatively narrowband
(compared with GOES or Yohkoh/SXT), we have to be aware that this intrinsic temperature
width represents an ultimate lower limit for resolving multiple temperature structures, and
thus constitutes a bias in the inversion of narrower (more isothermal) temperature structures
in the DEM inversion, as previously verified (e.g. Kashyap and Drake, 1998; Landi, Reale,
and Testa, 2012). An additional caveat of widely distributed DEMs is that the intensity is
completely smoothed out, regardless of the shape of the response function. Although AIA
has the ability to reconstruct simple DEM forms, the greater the width of the plasma DEM
is, the lower is the accuracy and precision in the determination of the DEM parameters,
which is a fundamental limitation (Guennou et al., 2012).

Another uncertainty in DEM reconstructions comes from atomic physics, such as the
atomic line emissivities, the assumption of ionization equilibrium, and variations in elemen-
tal abundances between the chromosphere and corona. The AIA response functions were
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Figure 3 Temperature-response
functions for the seven coronal
EUV channels of the
Atmospheric Imaging Assembly
(AIA) onboard the Solar
Dynamics Observatory (SDO),
according to the status of
December 2012. The GOES/XRS
1 – 8 Å and 0.5 – 4 Å response is
also shown [in arbitrary flux
units], as well as the thermal
energy of the lowest fittable
RHESSI channels at 3 keV and
6 keV. The approximate peak
temperature range of large flares
(Tp ≈ 5 – 20 MK) is indicated
with a hatched area.

calculated based on the latest version (7.1) of the CHIANTI code. While the line intensities
in the wavelength range of 170 – 350 Å included in CHIANTI are considered to be satisfac-
tory, the CHIANTI Version 7.1 code appears to underpredict the observed intensities in the
50 – 150 Å wavelength range by factors of two to six (Boerner et al., 2014), which affects
mostly the 94 and 131 Å channels (Aschwanden and Boerner, 2011; Teriaca, Warren, and
Curdt, 2012), a fact that was also corroborated with measurements of spectra from the star
Procyon taken by Chandra’s Low Energy Transmission Grating (LETG: Testa, Drake, and
Landi, 2012). Regarding elemental abundance variations, AIA has been designed to consist
of six coronal wavelength channels that are all sensitive to iron lines, and thus the elemental
abundance of iron, which exhibits the largest first-ionization-potential (FIP) effect, largely
cancels out in the combination of the six coronal AIA channels. However, although the shape
of the reconstructed DEM is not much affected when only iron lines are used, the magnitude
of the DEM still depends on the absolute value of the iron abundance, which may have a
substantially larger error than 10 %. In our benchmark study we choose to neglect the atomic
physics uncertainties, which makes the expected cancellation of the FIP effect less certain.

The calibration uncertainties of the AIA response function have been estimated to be
25 % in absolute terms, using a comparison of full-disk-integrated fluxes with SDO/EVE,
but reduce to �10 % after application of the cross-calibration (Boerner et al., 2014). The
residual ratios left from fitting the AIA/EVE flux ratios are shown in Figure 2 of Boerner
et al. (2014) and can also be obtained from the IDL Solar SoftWare (SSW) procedure
aia_bp_read_error_table. The individual uncertainties in the different AIA channels amount
to: 8.7 % (94 Å), 5.1 % (131 Å), 1.9 % (171 Å), 1.4 % (193 Å), 1.9 % (211 Å), 2.3 %
(304 Å), 9.7 % (335 Å), so we conservatively adopt 10 % as an upper limit.

3.2. The SDO/EVE Response Function

The EVE onboard SDO measures the solar irradiance at many EUV wavelengths. Here we
use observations from the Multiple EUV Grating Spectrograph A (MEGS-A), a grazing-
incidence spectrograph that operates in the 50 – 370 Å wavelength range, has a spectral
resolution of ≈1 Å, and an observing cadence of ten seconds. The observed emission at
these wavelengths is sensitive to temperatures ranging from the upper chromosphere (He II

304 Å) to about 25 MK (Fe XXIV 192 and 255 Å). Since the peak temperature sensitivity
of MEGS-A is below the peak temperature observed in many flares, it is useful to com-
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Figure 4 The SDO/EVE response function [REVE(λ,T )], represented here as the CHIANTI emissivity
convolved with the EVE spectral resolution, as a function of the wavelength [λ] (horizontal axis) and temper-
ature (vertical axis in top panel), in the range of λ = 60 – 350 Å and log(Te) = 5.5 – 8.0. (bottom panel) An
isothermal spectrum at a temperature of log(Te) = 7.1 and an emission measure of 1051 cm3 is shown. The
temperature is indicated by a dotted line in the upper panel.

bine EVE observations with observations from other instruments that are sensitive to higher
temperature emission (e.g. GOES/XRS, RHESSI).

The modest spectral resolution of MEGS-A means that while many spectral features
can easily be identified, many are blended and reliably calculating the fluxes of individual
emission lines is difficult. Our strategy is to compute theoretical spectra from CHIANTI,
convolve them with the EVE spectral resolution, and to compare these spectra directly with
the observations in selected wavelength ranges. The calculated spectra used for this work
are shown in Figure 4. Further details are given by Warren, Mariska, and Doschek (2013),
Caspi, McTiernan, and Warren (2014).

We note that since the spectral information is preserved in the treatment of the EVE ob-
servations, the application of random perturbations affects these data differently than other
broadband measurements. For the broadband measurements, the integrated intensity is per-
turbed. With the EVE data we are perturbing the intensity in each spectral pixel and thus
the fluctuations tend to average out, leaving the intensity in each spectral feature largely
unchanged. A more realistic treatment would be to smoothly vary the effective areas that
are used to convert the observed count rates to absolute intensities. Our expectation is that
the uncertainty in the calibration is dominated by systematic trends and not pixel-to-pixel
noise. Such a procedure would be relatively easy to implement, but is beyond the scope of
this work.

One subtlety of analyzing the actual EVE observations is that unidentified emission lines
make significant contributions to some wavelength ranges and the calculated spectra cannot
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be matched to the observations in these regions (Warren, 2005; Testa, Drake, and Landi,
2012). This can be addressed by subtracting a pre-flare spectrum from the observed spectra
during the flare (e.g. Warren, Mariska, and Doschek, 2013; Caspi, McTiernan, and War-
ren, 2014). For this work, which considers theoretical spectra, we do not apply background
subtraction since no background is simulated in the synthesized input.

3.3. The RHESSI Response Function

RHESSI observes solar photons from ≈3 keV to ≈17 MeV (Lin et al., 2002), using a set of
nine cryogenically cooled coaxial germanium detectors to achieve �1 keV FWHM spectral
resolution (Smith et al., 2002).

RHESSI is also capable of imaging X-ray and γ -ray sources through a Fourier method
(Hurford et al., 2002), but we do not use the imaging capabilities for this work.

Since flare temperatures of Te ≈ 5 – 50 MK correspond to thermal electron energies of
Eth = kBTe ≈ 0.4 – 4.4 keV (Figure 3), RHESSI is sensitive to the high-temperature tails of
flare DEMs, whose emission typically dominates the RHESSI spectrum in the 3 – 20 keV
energy range. While most of the thermal emission detected in this range is produced by the
free–free (bremsstrahlung) and free–bound (radiative recombination) continuum processes,
RHESSI also observes the line emission of two iron-dominated line complexes at ≈6.7 (Fe)
and ≈8 (Fe/Ni) keV (Phillips, 2004, 2008; Phillips, Chifor, and Dennis, 2006; Caspi and
Lin, 2010). When multiple thermal components are present, fitting of RHESSI thermal spec-
tra in isolation has a bias toward higher temperatures because of RHESSI’s exponentially
increasing temperature sensitivity (McTiernan, 2009). For intense flares where the DEM
tail extends to very high temperatures, an isothermal or δ-function DEM analysis often
yields a “super-hot” component in the temperature range of Te ≈ 20 – 50 MK (e.g. Caspi
and Lin, 2010; Caspi, Krucker, and Lin, 2014, which is significantly higher than the DEM
peak temperature (with a typical range of Te ≈ 10 – 20 MK), a bias that was also quantita-
tively investigated by Ryan et al. (2014). Improved temperature diagnostics can be obtained
by combining RHESSI high-temperature spectra with the broadband EVE irradiance spec-
tra that are sensitive to the lower-temperature emission, a method that has been successfully
applied to two X-class flare events so far (Caspi, McTiernan, and Warren, 2014).

3.4. The GOES Response Function

The GOES X-Ray Sensor (XRS) measures spatially integrated broadband solar X-ray radi-
ation in two overlapping passbands: 1 – 8 Å and 0.5 – 4 Å. In typical solar conditions, it is
most sensitive to coronal emission from temperatures of ≈4 – 40 MK. This is ideal for exam-
ining the bulk thermal emission of M- and X-class flares which have typical peak tempera-
tures of 10 – 25 MK (Ryan et al., 2014). The XRS detectors comprise two ion chambers, one
for each channel. The output currents of the ion chambers are related to the incident X-ray
flux via wavelength-dependent transfer functions (Garcia, 1994; Hanser and Sellers, 1996).
The GOES/XRS response function is calculated based on the CHIANTI code assuming pho-
tospheric (or coronal) elemental abundances and ionization equilibrium (e.g. Feldman et al.,
1992; Mazzotta et al., 1998).

Normally when analyzing GOES/XRS observations, the DEM is assumed to be isother-
mal and is then derived from the ratio of the short- and long-channel fluxes (Thomas, Cran-
nell, and Starr, 1985; Garcia, 1994; White, Thomas, and Schwartz, 2005). This limitation is
given because the two-channel data can only constrain a single temperature with a filter-ratio
technique. The isothermal approximation, however, has a temperature bias for multi-thermal
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DEM distributions (see Equation (7) of Ryan et al. (2014)). The two-channel data alone also
cannot strongly constrain broad DEM solutions of forward-fitting techniques, resulting in a
wide range of non-unique solutions. Combining GOES/XRS with other instruments, how-
ever, such as with SDO/EVE (Warren, Mariska, and Doschek, 2013) as used in this work,
provides the necessary constraints to yield more realistic multi-thermal DEMs.

4. DEM Inversion Methods and Results

In the following section, we describe 11 different DEM inversion and forward-fitting meth-
ods, where each method consists of a choice of DEM parameterization, degrees of freedom,
optimization algorithm, spatial summing, and data set from different instruments, as indi-
cated in Table 1 for the cases studied here. In the following we present also the results that
these 11 methods produce for the four simulated Models A – D pictured in Figure 1. The
results are graphically presented in Figures 5 – 10, and quantitatively compiled in Tables 2
and 3.

The values of the simulated DEM peak temperature [Tp], the DEM peak emission mea-
sure [EMp], the total emission measure [EMtot], the multi-thermal energy [Eth], and the
χ2-values of the best fits are specified in Table 2 for the four Models A – D while the ra-
tios of the best-fit values to the simulated values are compiled in Table 3. The ratios of the
fitted to the simulated wavelength fluxes are graphically presented in Figure 9, while the
(logarithmic) ratios of the simulated ones to the inverted DEMs are shown in Figure 10.

4.1. Single-Gaussian DEM Fit (G1)

One of the most robust choices of a DEM function with a minimum of free parameters is
a single Gaussian (in the logarithm of the temperature), which has three free parameters
only and is defined by the peak emission measure [EMp], the DEM peak temperature [Tp],
and the logarithmic Gaussian temperature width [w]. The DEM parameter has cgs units
[cm−5 K−1],

EM(T ) = n2
e

dz

dT
= EMp exp

(
−[log(T ) − log(Tp)]2

2w2

)
, (9)

Table 1 Characteristics of 11 DEM methods applied in this study: Name of DEM method, DEM parame-
terization function, degrees of freedom, optimization algorithm, number of spatial pixels, and instrument of
data used.

Method Parametrization Degrees of freedom Optimization algorithm Pixels Data

G1 Single Gaussian 3 Least-square minimization 1 AIA

G2 Bi-Gaussian 4 Least-square minimization 1 AIA

FG Fixed Gaussians 4 – 6 Least-square minimization 1 AIA

LS Linear Spline 4 – 6 Least-square minimization 1 AIA

SS Single Gaussian 3 Least-square minimization 16,384 AIA

MC N/A 61 Markov Chain Monte Carlo 1 AIA

RI N/A 61 Regularized Inversion 1 AIA

HX Spline 4 – 6 Least-square minimization 1 AIA

PS Spline 4 – 6 Least-square minimization 1 AIA

EG Fixed Gaussians 10 – 20 Least-square minimization 1 EVE+GOES

ER Fixed Gaussians 10 – 20 Least-square minimization 1 EVE+RHESSI
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Figure 5 DEM inversions of monolithic loop Model A, using 11 different DEM forward-fitting or inversion
methods. The simulated DEM is indicated with a black histogram, while the average of 30 DEM inversions
(by adding 10 % noise to the simulated fluxes) are indicated with red curves, including error bars. The reduced
χ2 is computed from the average of the 30 runs. The x-axis represents the logarithm of the temperature [K].

where the total emission measure [EM = n2
e dz = ∫

EM(T )dT ] is the temperature integral
over the Gaussian DEM [cm−5]. Single-Gaussian DEM fits have been used in many studies
with AIA data (e.g. Aschwanden and Boerner, 2011; Aschwanden and Shimizu, 2013; Ryan
et al., 2014).
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Figure 6 DEM inversions for thin-loop Model B, using 11 different DEM methods. The simulated DEM
is indicated with a black histogram, while the average of 30 DEM inversions (by adding 10 % noise to the
simulated fluxes) are indicated with red curves, including error bars. The reduced χ2 is computed from the
average of the 30 runs. The x-axis represents the logarithm of the temperature [K].



M.J. Aschwanden et al.

Figure 7 DEM inversions for nanoflare loop Model C, using 11 different DEM methods. The simulated
DEM is indicated with a black histogram, while the average of 30 DEM inversions (by adding 10 % noise to
the simulated fluxes) are indicated with red curves, including error bars. The reduced χ2 is computed from
the average of the 30 runs. The x-axis represents the logarithm of the temperature [K].



DEM Benchmark Test

Figure 8 DEM inversions for the dual-temperature arcade Model D, using 11 different DEM methods. The
simulated DEM is indicated with a black histogram, while the average of 30 DEM inversions (by adding
10 % noise to the simulated fluxes) are indicated with red curves, including error bars. The reduced χ2 is
computed from the average of the 30 runs. The x-axis represents the logarithm of the temperature [K].
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Figure 9 Ratios of fitted fluxes to simulated fluxes for the six AIA wavelengths. The error bars were obtained
from adding 10 % random noise to the simulated fluxes. The standard deviation of the fitted to the simulated
fluxes are quoted in percentages. The x-axis represents the wavelength in Å.

In our DEM forward-fitting code we define logarithmically spaced values for the electron
temperature, log(Tp) = 5.0, . . . ,8.0 K, for the logarithmic Gaussian width w = 0.01, . . . ,1,
and for the peak emission measure values log(EMp) = 23, . . . ,29. The temperature range is
identical to the discretized definition of the instrumental response function [R(T )]. Approx-
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Figure 10 The accuracy of the 11 DEM inversion methods is shown by the ratio of the best-fit and simulated
emission measure [log(EMfit/EMsim)], as a function of the temperature [log(T )], where the color indicates
the four simulations A (blue), B (brown), C (red), and D (orange). The ranges within two orders of magnitude
below the peak emission measure EMsim are indicated with dotted-vertical lines and the average deviations
in percentages are listed for this range.
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Table 2 The values of the simulated DEM peak temperature [Tp: MK], DEM peak emission measures [EMp:

cm−3 K−1], total emission measures [EMtot: cm−3], and total multi-thermal energies [Eth: erg] of the sim-
ulated Models A, B, C, and D.

DEM method DEM peak
temperature
log(Tp)

DEM peak emission
measure log(EMp)

Total emission
measure log(EMtot)

Multi-thermal
energy log(Eth)

Model A 7.100 41.993 48.700 29.901

Model B 7.200 43.038 49.779 30.568

Model C 7.200 42.053 49.003 30.242

Model D 6.900 41.416 48.103 29.600

imate best-fit values are then found simply by a global search in this three-parameter space
[Tp,w,EMp] by calculating the minimum of the reduced χ2 criterion (e.g. Bevington and
Robinson, 1992),

χred =
[

1

nfree

nλ∑
λ=1

(f fit
λ − f sim

λ )2

σ 2
λ

]1/2

, (10)

where f sim
λ are the six simulated AIA flux values, f fit

λ are the fitted flux values (using the
Gaussian EM(T ) defined in Equation (9)),

fλ(Tp,w,EMp) =
nT∑
k=1

EM(Tk,w,EM)Rλ(Tk)�Tk, (11)

σλ are the estimated uncertainties, [nfree = nλ − npar] is the number of degrees of freedom,
which is nfree = 3 for nλ = 6, the number of AIA wavelength filters, and npar = 3, the number
of model parameters. The uncertainties [σλ], which are dominated by the inaccuracies in the
knowledge of the AIA instrumental-response function, are estimated to be of the order of
10 % of the observed fluxes (Boerner et al., 2014). We neglect the Poisson noise of the
photon statistics, which is on the order of

√
(N)/N ≈ 10−4 – 10−3 for AIA count rates of

N ≈ 106 – 108 photons s−1 (Boerner et al., 2014; O’Dwyer et al., 2010).
Consequently, the estimate of the uncertainty is

σλ ≈ qnoisef
sim
λ , (12)

with qnoise ≈ 0.1. We generate simulated fluxes by adding 10 % random noise to the noise-
free data, i.e. f ran

λ = (1 + ρλqnoise)f
sim
λ , where random values ρλ are drawn from a normal

distribution with a standard deviation of unity. From a global search of the minimum in
the three-parameter space [Tp,w,EMp] we obtain an approximate solution for the DEM,
which we use as an initial guess for a refined optimization using the Powell χ2-minimization
method (Press, Flannery, and Teukolsky, 1986).

4.1.1. Results G1

We now turn to the results of our DEM fits. The best fits to the simulated fluxes
[f sim

λ (Equation (6))] of a single-Gaussian DEM function are shown in Figures 5, 6, 7, 8
(top left panel), which fit the simulated DEM function most accurately near the peak of



DEM Benchmark Test

Table 3 The ratios of the fitted to the simulated values of the DEM peak temperature [qT = T fit
p /T sim

p ],

the DEM peak emission measures [qEMp = EMfit
p /EMsim

p : cm−3 K−1], the total emission measures [qEMt =
EMfit

t /EMsim
t : cm−3], the multi-thermal energy [qEth = Efit

th /Esim
th : erg], the goodness-of-fit [χ2], and the

fluxes [qf = f fit
λ /f sim

λ ], tabulated for four DEM Models (A, B, C, D) and 11 DEM reconstruction methods.

DEM
Model

DEM
method

DEM
peak
temp.
ratio qT

DEM
emission
measure ratio
qEMp

Total
emission
measure ratio
qEMt

Multi-thermal
energy ratio
qEth

Goodness
of fit χ2

Flux ratio qF

A G1 0.56 0.52 1.00 1.61 2.65 ± 0.37 0.93 ± 0.27
A G2 1.00 0.59 0.89 0.96 1.33 ± 0.33 0.99 ± 0.12
A FG 0.79 0.53 0.99 1.50 1.36 ± 0.37 0.98 ± 0.13
A LS 0.63 0.67 0.95 1.54 1.83 ± 0.32 0.97 ± 0.18
A SS 1.00 0.80 0.99 1.32 2.53 ± 0.21 1.24 ± 0.08
A MC 0.79 0.38 0.30 0.45 0.22 ± 0.26 1.00 ± 0.02
A RI 0.89 0.56 0.87 1.34 7.94 ± 4.65 0.89 ± 0.12
A HX 0.79 0.78 0.97 1.25 1.64 ± 1.11 0.98 ± 0.08
A PS 0.79 0.84 0.97 1.28 1.28 ± 0.94 0.99 ± 0.09
A EG 0.87 0.67 0.85 1.76 1.37 ± 0.56 0.09
A ER 0.87 0.98 0.83 1.54 1.26 0.02

B G1 0.79 0.40 1.05 1.56 1.55 ± 0.32 0.98 ± 0.12
B G2 1.12 0.47 0.94 1.04 0.95 ± 0.28 0.99 ± 0.06
B FG 0.63 0.48 0.71 0.96 2.96 ± 0.39 0.92 ± 0.30
B LS 1.12 0.41 1.10 1.49 1.50 ± 0.44 1.00 ± 0.11
B SS 1.00 0.80 0.99 1.25 1.25 ± 0.17 1.08 ± 0.08
B MC 0.79 0.32 0.32 0.53 0.25 ± 0.37 1.00 ± 0.02
B RI 0.71 0.05 0.11 0.50 149.76 ± 9.36 0.38 ± 0.37
B HX 0.79 0.50 1.09 1.50 0.97 ± 0.64 0.99 ± 0.06
B PS 0.71 0.55 1.01 1.39 1.09 ± 0.78 0.99 ± 0.07
B EG 0.91 0.58 0.90 1.75 1.19 ± 0.27 0.07
B ER 0.83 0.90 0.86 1.55 1.11 0.02

C G1 0.79 0.60 1.06 1.40 1.18 ± 0.32 0.99 ± 0.09
C G2 1.12 0.71 0.98 1.02 0.76 ± 0.24 0.99 ± 0.04
C FG 0.63 0.69 0.63 0.79 3.17 ± 0.40 0.91 ± 0.32
C LS 1.26 0.50 0.88 1.19 1.96 ± 0.69 0.92 ± 0.11
C SS 0.89 0.74 1.01 1.30 0.72 ± 0.24 0.98 ± 0.04
C MC 0.63 0.52 0.25 0.40 0.24 ± 0.27 1.00 ± 0.02
C RI 0.71 0.06 0.09 0.39 157.22 ± 8.18 0.36 ± 0.38
C HX 0.89 0.57 0.87 1.23 2.48 ± 10.86 0.98 ± 0.04
C PS 0.79 0.74 1.04 1.32 0.60 ± 0.58 0.99 ± 0.04
C EG 0.91 0.93 0.86 1.63 1.18 ± 0.25 0.04
C ER 1.00 1.05 0.90 1.53 1.11 0.02

D G1 0.79 0.46 0.93 1.55 2.00 ± 0.37 0.96 ± 0.21
D G2 1.12 0.61 0.88 0.85 1.01 ± 0.42 0.99 ± 0.11
D FG 0.71 0.58 0.96 1.35 1.34 ± 0.38 0.98 ± 0.15
D LS 1.00 1.13 1.03 1.12 0.99 ± 0.49 1.03 ± 0.06
D SS 1.00 0.92 0.99 1.20 0.52 ± 0.17 1.01 ± 0.02
D MC 1.00 0.39 0.19 0.32 0.06 ± 0.04 1.00 ± 0.01
D RI 1.00 0.63 0.89 1.25 3.94 ± 3.89 0.94 ± 0.11
D HX 0.89 0.70 0.98 1.14 1.68 ± 2.23 0.99 ± 0.09
D PS 0.89 0.85 1.03 1.14 0.71 ± 0.92 0.99 ± 0.06
D EG 1.05 0.81 0.85 1.59 1.24 ± 0.22 0.99 ± 0.06
D ER 0.95 1.14 0.90 1.50 1.30 0.02
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the DEM, but yield too low DEM values at the low-temperature side and too high DEM
values at the high-temperature side. We see that the model-predicted fitted flux values dif-
fer by 9 % – 26 % with respect to the simulated input flux values for the four cases A – D
(Figure 9), and the resulting DEM functions differs by 13 % – 19 % (Figure 10). Obviously,
a single-Gaussian DEM function cannot fit a highly asymmetric DEM well, but is likely to
do better for a near-symmetric single-peaked DEM distribution function. This is also con-
sistent with the goodness-of-fit criterion, which yields values significantly above unity for
all four cases A – D (Figures 5 – 8), indicating that the G1 model does not fit the data as well
as possible within the estimated flux uncertainties.

4.2. Bi-Gaussian DEM Fit (G2)

In order to accommodate asymmetric DEM functions, we introduce the bi-Gaussian DEM
function (G2), which is composed of two semi-Gaussian functions with two different tem-
perature half widths [w1 and w2] on the low- and high-temperature sides,

EM(T ) = EMp exp

(
−[log(T ) − log(Tp)]2

2w2

) {
w = w1 for T ≤ Tp

w = w2 for T ≥ Tp,
(13)

with a total of four variables [npar], i.e. EMp, Tp,w1,w2. Since the AIA instrument has
npar = 6 coronal wavelength filters, there are two degrees of freedom, nfree = nλ − npar =
6 − 4 = 2, for this model.

We choose equidistant values in the logarithmic ranges of log(EMp) = 23, . . . ,29 for
the emission measure [cm−5 K−1], log(Tp) = 5.5, . . . ,7.5 for the peak temperatures [K],
and w = 0.01, . . . ,10 for the Gaussian widths. As with the single-Gaussian method [G1]
we find first an approximate DEM solution from an absolute search in the discretized three-
dimensional parameter space, which is then used as initial guess for subsequent optimization
with the Powell χ2-minimization method (Press, Flannery, and Teukolsky, 1986).

4.2.1. Results G2

The best fits are shown in Figures 5 – 10 (second left panels). All of the fits for the four Mod-
els A – D represent the peak of the asymmetric DEM function better than the (symmetric)
single-Gaussian fits from G1. The low-temperature side of the DEM function can be fitted
with a large semi-Gaussian width of w1 ≈ 1.5 and the high-temperature side with a very
small semi-Gaussian width of w2 ≈ 0.01 to mimic the steep drop-off. The goodness-of-fit
criterion varies in the range of χ2 ≈ 0.76 – 1.33 for the four cases A – D (Figures 5 – 8; sec-
ond left frames), the fitted flux values differ by 4 % – 12 % with respect to the simulated flux
values (Figure 9), and the resulting DEM functions differ by 11 % – 15 % (Figure 10). The
actual uncertainty of the AIA response function is comparable, i.e. ≈10 % (Boerner et al.,
2014), which we emulate here by generating 30 data sets of fluxes with 10 % noise added.
The bi-Gaussian DEM function turns out to be a good choice for the asymmetric single-
peaked DEM Models A – C used here, but is by nature less adequate to fit multi-peaked
DEMs (such as Model D).

4.3. Multiple Fixed-Gaussian DEM Fit (FG)

In principle, one can define a more versatile DEM function by a superposition of an arbitrary
number of Gaussian functions (Equation (9), n > 2), but the number of free parameters will
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increase by nfree = 3n, which becomes prohibitive for practical purposes of numerical fitting.
One way to keep the number of free parameters within a reasonable limit is to fix the peak
temperatures [Tp,i ] at logarithmically equi-spaced values (with a step of � log(T )) and to
fix the Gaussian widths to a value that corresponds to about half the separation step, i.e.
w = � log(T )/2, so that only the emission measure values EMp,i have to be optimized.
Such a multiple fixed-Gaussian method (FG) has been applied in several studies using AIA
or EVE data (e.g. Aschwanden and Boerner, 2011; Warren, Mariska, and Doschek, 2013;
Caspi, McTiernan, and Warren, 2014). In this section, we apply this method to the AIA data
alone; the application to combined EUV and X-ray data, using EVE and GOES/XRS and/or
RHESSI together, is discussed in later sections.

4.3.1. Results FG

We show the application of such a multiple fixed-Gaussian DEM method to the four Models
A – D in Figures 5 – 10 (third left panel), using six fixed Gaussians centered at the temper-
atures log(T ) = 6.00,6.25, . . . ,7.25 with a fixed width of w = 0.13. The best fits show a
double-humped DEM function, which seem to depend somewhat on the choice of the fixed
temperatures Tp,i . In any case, the DEM function with fixed Gaussians appears to fit the
examples here with less accuracy than the bi-Gaussian function. The goodness-of-fit cri-
terion varies in the range of χ2 ≈ 1.4 – 3.2 for the four Cases A – D (Figures 5 – 8, third
left frames), the fitted flux values differ by 13 % – 31 % with respect to the simulated flux
values (Figure 9), and the resulting DEM functions differ by 11 % – 18 % (Figure 10). We
conclude that DEM functions with multiple fixed Gaussians can provide good fits when the
fixed temperatures agree with the peaks of the DEM, which requires some adjusting of the
fixed peak-temperature values. However, we note that the application of this method with
EVE+GOES and EVE+RHESSI data yields superior fits (see below), most likely because of
the significantly greater EUV spectral data available from EVE, combined with the strong
constraints on the high-temperature tail provided by the X-ray data, which also allow a
greater number of fixed Gaussian components to be used in the model.

4.4. Linear Spline DEM Fit (LS)

Spline functions are defined by fixed points [xi ] on the x-axis, which have some partic-
ular values [yi = y(xi)] on the y-axis, and which are linearly interpolated in between.
We choose five temperature spline points Tk, k = 1, . . . ,5 on the logarithmic x-axis cov-
ering the range of Tk = 105.8, . . . ,107.3 K, and consider the corresponding five spline values
EMk, k = 1, . . . ,5 as free parameters to be fitted, which is very similar to the multiple fixed-
Gaussian fitting method. The spline points have a fixed step of � log(Tk) = 0.375. We find
an initial guess with an absolute minimum search in the five-dimensional χ2-space, followed
by a subsequent Powell optimization.

4.4.1. Results LS

We show the application of such a linear spline DEM fitting method to the four Models A – D
(Figures 5 – 8). The goodness-of-fit criterion varies in the range of χ2 ≈ 1.5 – 2.0 for the
four cases (Figures 5 – 8), the fitted flux values differ by 6 % – 18 % with respect to the
simulated flux values (Figure 9), and the resulting DEM functions differ by 12 % – 46 %
(Figure 10). In conclusion, the linear spline function fits the simulated DEMs with similar
accuracy as the multiple fixed-Gaussian method, but not as well as the bi-Gaussian function
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in these particular simulations. However, for the general case with multiple DEM peaks, the
linear spline function is expected to be more flexible than a single-Gaussian or bi-Gaussian
function.

4.5. Spatial Synthesis DEM Method (SS)

The DEM methods used so far all use the total spatially integrated flux from an observed
area that corresponds to the flare or active region size, and thus contains many locations with
possibly quite different temperature structures. Applying a DEM inversion to a single pixel
of an image, we are more likely to disentangle the complex multi-temperature structures into
simpler components, in some cases as simple as a near-isothermal segment of a resolved
monolithic loop, in which case a Gaussian fit becomes more adequate.

A sensible approach to the temperature-discrimination problem is to subdivide the image
area of a flare into macro-pixels or even single pixels, and then to perform a forward-fit of
a single-Gaussian DEM function in each spatial location separately, while the total DEM
distribution function of the entire flare area can then be constructed by summing all DEM
functions from each spatial location, which we call the “Spatial Synthesis DEM” method.
This way, the Gaussian approximation of a DEM function is applied locally only, but it
can adjust to different peak emission measures and temperatures at each spatial location.
Such a macro-pixel algorithm for automated temperature and emission measure analysis
has been developed for AIA wavelength-filter images by Aschwanden et al. (2013), and a
IDL/SSW code is available online (www.lmsal.com/~aschwand/software/aia/aia_dem.html).
The flux [Fλ(x, y, t)] is then measured in each macro-pixel location (x, y) and the fitted
DEM functions are defined at each location (x, y) separately,

EM(x, y;T ) = EMp(x, y) exp

(
−[log(T ) − log(Tp[x, y])]2

2w2[x, y]
)

, (14)

and are forward-fitted to the observed fluxes Fλ(x, y) at each location (x, y) separately, after
background subtraction of Bλ(xi, yj ) (which is set to zero in our simulated cases here):

Fλ(xi, yj ) − Bλ(xi, yj ) =
nT∑
k=1

EM(xi, yj ;Tk)Rλ(Tk). (15)

The synthesized differential emission measure distribution [EM(T )] can then be obtained
by summing all local DEM distribution functions [EM(T ;x, y, t): cm−3 K−1],

EM(T ) =
∑

i

∑
j

EM(xi, yj ;Tk)dxi dyj , (16)

and the total emission measure of a flaring region is then obtained by integration over the
temperature range [cm−3],

EM =
∑

k

EMk(Tk)�Tk. (17)

Note that the synthesized DEM function [EM(T )] (Equation (16)) generally deviates from
a Gaussian shape, because it is constructed from the summation of many Gaussian DEMs
from each macro-pixel location with different emission measure peaks [EMp(xi, yj )], peak
temperatures [Tp(xi, yj )], and thermal widths [w(xi, yj )]. This synthesized DEM function

http://www.lmsal.com/~aschwand/software/aia/aia_dem.html
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can be arbitrarily complex and accommodate a different Gaussian DEM function in every
spatial location (xi, yj ).

We developed a numerical code for this spatial-synthesis (SS) DEM method. We extract a
field-of-view of 512×512 pixels from the observed AIA images in six coronal wavelengths.
We rebin them by macro-pixels with a binsize of four full-resolution pixels, which forms a
grid of 128 × 128 macro-pixels (xi, yj ). The code performs then 1282 = 16,384 single-
Gaussian DEM fits per wavelength set, and adds up the partial DEMs of each macro-pixel
to a total field-of-view DEM function.

4.5.1. Results SS

The results of the DEM inversion of our Models A – D are shown in Figures 5 – 10 (top-
middle panels). It appears that the detailed shape of the DEM function is well fitted with
the spatial-synthesis DEM method in all four Cases A – D. The goodness-of-fit criterion
varies in the range of χ2 ≈ 0.5 – 2.5, the fitted flux values differ by 2 % – 8 % with re-
spect to the simulated flux values (Figure 9), and the resulting DEM functions differ by
11 % – 12 % (Figure 10). Given the estimated uncertainties of the response function in the
order of ≈10 % (Boerner et al., 2014), the spatial-synthesis DEM method appears to pro-
vide a most adequate and flexible parameterization that fits the DEM within the uncertain-
ties of the response functions. Tests of over 6400 DEM reconstructions during about 400
flares demonstrate that arbitrarily complex DEMs can be adequately fitted with the spatial-
synthesis method (Aschwanden et al., 2015), regardless of whether the DEMs are asym-
metric or multi-peaked, which generally cannot be achieved with the previously discussed
DEM methods. Of course, if AIA data are used alone, the temperature range of reliable
DEM reconstruction is limited to log(T ) ≈ 5.8 – 7.3.

4.6. Monte-Carlo Markov Chain Method (MC)

The Monte Carlo Markov Chain (MC) method is a forward-modeling DEM method that
does not assume a particular functional form for the DEM distribution function (Kashyap
and Drake, 1998), but applies some smoothness criteria that are locally variable and based
on the properties of the temperature responses and emissivities for the input data, instead
of being arbitrarily determined a priori (Testa et al., 2012). The MC method is considered
to produce robust and unbiased results, because it does not impose a pre-determined or ar-
bitrarily selected functional form for the solution, and because it provides also an estimate
of the uncertainties of the DEM function. The MC method has been applied to solar DEM
modeling of Solar Extreme Ultraviolet Rocket Telescope and Spectrograph (SERTS) obser-
vations (Kashyap and Drake, 1998), to SOHO and Hinode data (Landi, Reale, and Testa,
2012), to Hinode/EIS, XRT, and SDO/AIA data (Hannah and Kontar, 2012; Testa et al.,
2012), as well as to artificial data simulated with an MHD code (Testa et al., 2012). The
latter application provides a validity test, since the exact DEM solution is known from the
simulated data, which revealed that the differences between the simulated and forward-fitted
data were larger than predicted by the MC method (Testa et al., 2012).

4.6.1. Results MC

The application of the MC method to our four simulated Models A – D reveals two striking
properties. First, the fluxes are fitted extremely well, with an accuracy of 1 % – 2 % (Fig-
ure 9), which is the highest accuracy obtained in our benchmark test. Secondly, the DEM
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function appears to be fitted poorly, underestimating the simulated DEM function at all tem-
peratures except near the peak of the DEM (Figures 5 – 8). The goodness-of-fit values are in
the range of χ2 = 0.06 – 0.25 (Figures 5 – 8), which indicates that the MC method over-fits
the data. The other methods described here all apply a smoothness constraint on their result
in the form of a parameterization of the DEM function; this has the effect of limiting the
accuracy in the recovery of the input fluxes in the presence of noise or non-smooth input
DEMs, but it also tends to produce solutions that are more robust to small signal fluctua-
tions. The MC DEM results are highly sensitive to noise in the observations; however, the
algorithm provides an estimated uncertainty, which in general is close to the difference be-
tween the simulated and fitted DEM, while the average uncertainty (obtained here from 30
iterations with 10 % added noise) is mostly below.

4.7. Regularized Inversion Method (RI)

Similar to the MC inversion algorithm, the Regularized Inversion (RI) method, developed
by Hannah and Kontar (2012), introduces an additional “smoothness” to constrain the am-
plification of the uncertainties, allowing a stable inversion to recover the DEM solution. The
RI spectral inversion method was first applied to RHESSI spectra (e.g. Piana et al., 2003;
Massone et al., 2004; Brown et al., 2006; Prato et al., 2006), and subsequently to SDO/AIA
and Hinode/EIS data (Hannah and Kontar, 2012).

The RI method was tested with Gaussian, multi-Gaussian, and CHIANTI DEM mod-
els. The uncertainty in finding the peak temperature was found to be of order � log(T ) ≈
0.1 – 0.5, depending on the noise level. For Hinode/EIS data, the DEM is broadened by an
uncertainty of ≈20 %. For active-region DEMs observed with EIS and XRT, the RI method
was found to retrieve a similar DEM as the MC method (Hannah and Kontar, 2012).

4.7.1. Results RI

In our application of the regularized inversion method we found a passable DEM fit for
the Models A and D, while the method failed and did not converge for Models B and C
(Figures 5 – 8). The fitted flux ratios have an accuracy of ≈11 % – 12 % for Model A and D
(Figure 9), but a much poorer accuracy of ≈37 % – 38 % for Model B and C (Figure 9).
Also the ratio of DEM values is acceptable for Model A and D (≈12 % – 15 %), while it is
unacceptable for Models B and D with ≈50 % – 70 % (Figure 10). Comparing all 11 tested
DEM algorithms, the regularized inversion method shows the poorest performance for the
particular four models tested here. The RI method appears to perform best for Model D. In
the other cases, the DEM is strongly peaked at temperatures above the regime where AIA
is most sensitive and best able to discriminate [log(T ) = 6.0 – 6.5]. As a result, most of the
signal in the AIA channels is not due to material at or near the temperature of the channel’s
peak sensitivity. This poses a difficult challenge for inversion methods.

4.8. Hinode/XRT Method (HX)

The Hinode/XRT algorithm is a DEM forward-fitting method that uses the functional form
of a spline function (i.e. a small number of spline points EM(T ) interpolated by some poly-
nomial function). DEM fitting with spline functions has been explored using Skylab/XUV
spectrograph data (Monsignori-Fossi and Landini, 1992), SERTS data (Brosius et al., 1996),
SOHO/CDS and UVCS data (Parenti et al., 2000), and more recently using SDO/AIA and
Hinode/XRT data (Weber et al., 2004; Golub et al., 2004). The spline points are adjusted
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iteratively as part of the minimization routine, unlike the fixed spline points used in the LS
method. The forward-fitting uses the IDL routine mpfit.pro and is implemented in the IDL
routine xrt_dem_iterative2.pro.

4.8.1. Results HX

Our application of the HX method to the four Models A – D shows that the DEM algorithm
always recovers the peak of the DEM function well, but retrieves the DEM function to a
much less accurate degree in the low-temperature regime [log(Te) ≈ 5.5 – 6.5]. Nevertheless,
the flux ratios are retrieved very accurately (with ≈4 % – 9 %; Figure 9), while the DEM
values are underestimated for Model A, but within the error estimates for the Models B – D.

4.9. Polynomial Spline Method (PS)

This is an alternative polynomial spline algorithm developed primarily for SDO/AIA data.
Its basic approach is quite similar to the HX method; it was developed independently, and
thus the details of the implementation are slightly different (for example, it uses a variable
number of spline points, instead of setting the number to one less than the number of obser-
vations). This routine was used in the initial calibration of SDO/AIA (Boerner et al., 2012)
and later in photometric and thermal cross-calibrations of AIA with Hinode/EIS and Hin-
ode/XRT (Boerner et al., 2014). The difference between this method and the HX method
can be thought of as providing a feel for the potential significance of low-level differences
in a code on the results.

4.9.1. Results PS

The application of the PS method to our four Models A – D shows acceptable fits near the
DEM peak at log(Te) ≈ 7.0 (Figures 5 – 8). The fitted/simulated flux ratios are obtained
with a high accuracy of ≈4 % – 8 % (Figure 9), and the DEM ratios are accurate at high
temperatures (Figure 10), but they underestimate the DEM somewhat at lower temperatures.

4.10. EVE and GOES Fitting Method (EG)

The previously described tests all (with the exception of HX) use the AIA response func-
tions (Figure 3) to retrieve the DEM distribution function, which works generally well in the
temperature range of log(Te) ≈ 5.5 – 7.0, but is insufficiently covered at high flare temper-
atures of log(Te) ≈ 7.0 – 7.5. The high-temperature regime up to log(Te) ≈ 7.5, however, is
well covered by the combination of the SDO/EVE and GOES/XRS instruments (the high-
temperature tail above log(T ) ≈ 7.5 is typically poorly observed as its low emission measure
means that it contributes relatively little to the overall GOES/XRS signal). As the temper-
ature range in Figure 4 shows, EVE has high-temperature lines with log(Te) � 7.1 in the
wavelength regime of λ ≈ 90 – 270 Å.

A DEM reconstruction method using EVE and GOES (EG) data has been developed and
described by Warren, Mariska, and Doschek (2013). A DEM function composed of nG = 18
Gaussian at fixed temperatures is chosen (similar to the FG method described in Section 4.3),
which is then convolved with the CHIANTI atomic emissivities and yields a modeled EVE
spectrum, as well as GOES fluxes for the 0.5 – 4 Å and 1 – 8 Å channels. The magnitudes of
the emission measures [EM(Ti), i = 1, . . . , nG] are then varied and optimized until the EVE
spectrum and GOES fluxes are satisfactorily reproduced. A χ2 goodness-of-fit criterion is
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calculated from the fits to the EVE and GOES fluxes. As Figure 4 shows, the EVE fluxes
consist of both continuum and line emission, which are both calculated from the CHIANTI
emissivities in the modeled EVE irradiance spectrum.

4.10.1. Results EG

The application of the EG method to our four Models A – D shows that the simulated
DEM functions are retrieved very well in all four cases, with χ2-values in the range of
χ2 = 1.1 – 1.3 (Figures 5 – 8). Also the estimated errors of the recovered DEM functions
are comparable with the differences of fitted/simulated values (Figure 10). The ratio of the
fitted/simulated emission measure values are in the range of ≈11 % – 12 % (Figure 10),
evaluated from 30 different runs with 10 % added random noise.

4.11. EVE and RHESSI DEM Fitting Method (ER)

A similar combination to the EG method is the combination of SDO/EVE and RHESSI (ER)
data. EVE is sensitive in the temperature range of Te ≈ 2 – 25 MK, and RHESSI is sensi-
tive to thermal emission at Te � 10 MK. While the EG method has limited accuracy above
≈30 MK, RHESSI is increasingly sensitive to higher temperatures and, as a spectrometer,
it can also resolve broad DEM structures more accurately than the two-channel GOES/XRS
data. The ER method is therefore applicable to the broadest temperature range, from ≈2 MK
up to the hottest temperatures existing (typically ≈50 MK in the most intense flares; Caspi,
Krucker, and Lin (2014)). The ER method has been tested and applied to two solar flares
by Caspi, McTiernan, and Warren (2014). Similar to the EG method, the DEM distribution
function is composed of multiple (typically 10 – 20) Gaussians at fixed temperatures (as in
the FG method), which are used to generate predicted photon fluxes that are then convolved
with the RHESSI detector response function and the CHIANTI atomic emissivities to obtain
RHESSI X-ray and EVE/MEGS-A EUV irradiance spectra. The emission measures of the
Gaussian components are then varied to minimize the χ2, as in the FG and EG methods.

4.11.1. Results ER

Applying the ER method to our four DEM Models A – D, we find acceptable fits for all four
cases, with goodness-of-fit criteria of χ2 = 1.1 – 2.0 (Figures 5 – 8). The EVE and RHESSI
fluxes are very well matched (within an accuracy of ≈1 %) (Figure 9). Also the ratio of
the fitted/simulated DEM values is well matched (10 % – 12 %; Figure 10). The uncertain-
ties of the fitted DEM values is estimated from 30 runs with 10 % added random noise
and is comparable with the actual difference between fitted and simulated DEM values
(Figures 5 – 8, 10).

5. Summary of Results

This study analyzes a set of 11 separate DEM methods, using SDO/AIA, as well as
SDO/EVE, RHESSI, and GOES data. We provide here an objective comparison between
the 11 methods by evaluating their fidelity in matching the EM-weighted temperatures [Tw],
the peak emission measure [EMp], the total emission measure [EMt], the multi-thermal en-
ergy [Eth], the goodness-of-fit criterion [χ2], and the flux ratios [qf ] of the fitted to simulated
data. The results are also shown in Figures 5 – 10 and Table 3. We summarize here the results
of fitting these test parameters:
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i) EM-weighted temperature Tw: By averaging the 11 DEM fits in all four cases (i.e. the
44 values in the third column of Table 3), we find that the emission measure-weighted
temperatures have been determined with an accuracy of T fit

w /T sim
w = 0.88 ± 0.16, which

is comparable with the resolution of the temperature bins. Most DEM codes have diffi-
culty with inverting a sharp high-temperature cutoff, as it was simulated in the Models
A – C, while the accuracy increases to T fit

w /T sim
w = 0.94±0.12 for Model D alone, where

the high-temperature cutoff is more gradual.
ii) DEM peak emission measure EMp: The DEM peak emission measure has been deter-

mined with an accuracy of EMfit
p /EMsim

p = 0.64±0.24 for the 11 codes and four models
(fourth column of Table 3). We find the most irregular behavior for the Regularized In-
version (RI) method, which fails to retrieve the EMp parameter for Models B and C by
far. This may indicate a convergence problem of the RI code.

iii) Total DEM emission measure EMt: The total (temperature-intergrated) emission mea-
sure has been determined with an accuracy of EMfit

t /EMsim
t = 0.85 ± 0.27 for the

11 codes and four models (fifth column of Table 3). We find the most irregular be-
havior for the Regularized Inversion (RI) method and the Monte Carlo Markov Chain
(MC) method, which fail to retrieve the total emission measure for most cases, even
though the fluxes are fitted extremely well (within �1 – 2 % for the MC method). The
low χ2-values indicate that the MC method over-fits the data.

iv) Multi-thermal energy Eth: The multi-thermal energy, which is integrated over the en-
tire temperature range of the DEM (Equation (7)) is matched with an accuracy of
Efit

th /Esim
th = 1.2 ± 0.4 for the 11 codes and four models (sixth column in Table 3). The

MC method yields a poorer accuracy, i.e. Efit
th /Esim

th = 0.4 ± 0.1.
v) Flux ratios qF : The ratio of the fitted to the simulated fluxes yields a measure of how

well the best-fit model represents the simulated data. We list the mean flux ratios in
Table 3 (eighth column), which are averaged from six AIA fluxes for most methods,
and ≈10 – 20 flux values for the methods using EVE data (ER, EG). We see that most
of the obtained ratios have a mean near unity, within a few percent. The only exception
that we find is the RI method applied to Models B and C, indicating a convergence
problem. Tendencies of over-fitting are noted for the MCMC and ER method, based on
the untypically small flux errors of ≤1 % (Figure 9) and large number of degrees of
freedom (Table 1).

vi) Goodness-of-fit χ2: The χ2 is a goodness-of-fit criterion based on the estimated un-
certainties, which are simulated here with 10 % random noise added to a noise-free
model in 30 different representations. We list the means and standard deviations of the
χ2-values in Table 3. It is instructive to review each code separately in order to judge
their overall adequacy and accuracy. The most accurate codes with a mean value of
0.5 � χ2 � 2.0 are the G1, G2, LS, SS, HX, PS, EG, and ER codes. There are slight
systematic differences, for instance a bi-Gaussian DEM function (G2) yields in all four
models a better fit than a single Gaussian model (G1), which may be a bit fortuitous here,
since the simulated DEMs are highly asymmetric and thus can naturally be better repre-
sented with an asymmetric DEM function. Outliers are the MC code (χ2 = 0.19±0.09),
which appears to overfit the noise, and the RI code (χ2 ≈ 150), which appears to have
convergence problems.

In summary, the exercise that we conducted here reveals how accurately we can retrieve
physical parameters from AIA, EVE, and RHESSI fluxes, and to what degree DEM inver-
sions are multi-valued or ambiguous, in particular for the four models chosen here. Perhaps
the most important physical parameter is the thermal energy, which we demonstrated can
be retrieved within a factor of Efit

th /Esim
th = 1.2 ± 0.4 with all 11 codes tested here. A large
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statistical study on thermal energies using AIA data has been calculated for ≈400 flare
events recently (Aschwanden et al., 2015) for which we obtain an estimate of the absolute
uncertainty here.

For the models tested here, DEM inversions with AIA data alone yield apparently a
comparable accuracy as multi-instrument data, such as a combination of EVE with RHESSI
or GOES data. However, we note that all four of our models do not include significant high-
temperature emission [logT � 7.3], which would be outside the AIA range of sensitivity.
For extremely hot flares with DEM peak temperatures of log(T ) > 7.3, DEM modeling
should include high-temperature sensitivity as available from RHESSI and GOES data, as
is done here in conjunction with EVE data (in the ER and EG method).

The usage of AIA data eliminates uncertainties due to cross-calibration, but may under-
estimate absolute uncertainties of the AIA instrument. It is therefore gratifying to see that all
three instrument combinations (EVE+RHESSI, EVE+GOES, AIA) yield equally accurate
results for the inverted DEM distribution function. Specifically, the AIA spatial-synthesis
method, the EVE+GOES method, and the EVE+RHESSI method yield the most consistent
and accurate results, regardless of the complex shape of the simulated DEM function.
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