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ABSTRACT

We present the second part of a project on the global energetics of solar flares and coronal mass ejections that
includes about 400M- and X-class flares observed with the Atmospheric Imaging Assembly (AIA) onboard the
Solar Dynamics Observatory (SDO) during the first 3.5 yr of its mission. In this Paper II we compute the
differential emission measure (DEM) distribution functions and associated multithermal energies, using a
spatially-synthesized Gaussian DEM forward-fitting method. The multithermal DEM function yields a significantly
higher (by an average factor of ≈14), but more comprehensive (multi-)thermal energy than an isothermal energy
estimate from the same AIA data. We find a statistical energy ratio of E Eth diss ≈ 2–40% between the multithermal
energy Eth and the magnetically dissipated energy Ediss, which is an order of magnitude higher than the estimates of
Emslie et al. 2012. For the analyzed set of M- and X-class flares we find the following physical parameter ranges:
=L 10 –108.2 9.7 cm for the length scale of the flare areas, =T 10 –10p

5.7 7.4 K for the DEM peak temperature,

=T 10 –10w
6.8 7.6 K for the emission measure-weighted temperature, = -n 10 10p

10.3 11.8 cm−3 for the average

electron density, =EM 10 –10p
47.3 50.3 cm−3 for the DEM peak emission measure, and =E 10 –10th

26.8 32.0 erg for
the multithermal energies. The deduced multithermal energies are consistent with the RTV scaling law

= ´ -E T L7.3 10 p pth,RTV
10 3 2, which predicts extremal values of » ´E 1.5 10th,max

33 erg for the largest flare and

» ´E 1 10th,min
24 erg for the smallest coronal nanoflare. The size distributions of the spatial parameters exhibit

powerlaw tails that are consistent with the predictions of the fractal-diffusive self-organized criticality model
combined with the RTV scaling law.
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1. INTRODUCTION

While we measured the magnetic energy that is dissipated in
large solar flares in Paper I (Aschwanden et al. 2014a), the goal
of this paper II is the determination of thermal energies of the
heated flare plasma, in order to study the energy partition of the
input (magnetic) energy into various output (thermal and
other) energies. A crucial test is the thermal to magnetic energy
ratio, which is expected to be less than unity for magnetic
energy release processes (such as magnetic reconnection).
Ratios in excess of unity would indicate either inaccurate
energy measurements of either magnetic or thermal energies, or
would challenge standard flare scenarios where the source of
dissipated energy is entirely of magnetic origin. In the standard
CSHKP magnetic reconnection model (Carmichael 1964;
Sturrock 1966; Hirayama 1974; Kopp & Pneuman 1976),
magnetic reconnection drives the nonlinear dissipation of
magnetic energy, which is then converted partially into particle
acceleration and (precipitation-driven and conduction-driven)
flare plasma heating, for which the thermal energy is naturally
expected to be a fraction of the total dissipated magnetic energy
only. Thus, statistical measurements of the thermal to magnetic
energy ratio provide crucial tests for theoretical flare scenarios
as well as on the accuracy of observational flare energy
measurement methods.

The problematics of determining magnetic energies has been
discussed extensively in Paper I. There are three forms of
magnetic energies: the potential energy, the free energy (or

excess of nonpotential over potential energy), and the
dissipated energy, which corresponds to the negative change
of free energy during a flare event. Therefore, the measurement
of dissipated magnetic energies requires methods that can
accurately detect deviations from the potential magnetic field,
which are difficult to achieve, as a quantitative comparison of
12 nonlinear force-free field (NLFFF) extrapolation methods of
the photospheric magnetic field demonstrated (DeRosa
et al. 2009). Alternative NLFFF methods that use the geometry
of (automatically traced) coronal loops as constraints appear to
be more promising for this task (Paper I). There exists only one
study that attempts to compare dissipated magnetic energies
with thermal energies in a set of (large eruptive) flare events
(Emslie et al. 2012), but the dissipated magnetic energy could
not be determined in that study and instead was estimated to
amount to »E E 30%pdiss of the potential energy, leading to a
rather small thermal/magnetic energy ratio, on the order of

»E Eth diss 0.2–1%. Since the ratio of the dissipated magnetic
energy Ediss to the potential magnetic energy Ep has been found
to have a substantially smaller value in Paper I, in the range of

»E Epdiss 1–25% for a representative set of M- and X-class
flares, we suspect that the thermal/magnetic energy ratio is
systematically underestimated in the study of Emslie et al.
(2012). As a consequence, we will see in the present study that
the thermal/magnetic energy ratio in large solar flares is indeed
significantly higher than previously inferred in Emslie
et al. (2012).
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Even if we have an accurate method to determine the
dissipated magnetic energy in solar flares, there are also large
uncertainties in the determination of the thermal energy due to
the inhomogeneity and multithermal nature of the solar flare
plasma. In principle, an accurate measure of the multithermal
energy could be determined if the full 3D distribution of
electron temperatures T x y z( , , )e and electron densities
n x y z( , , )e are known, such as produced in 3D magneto-
hydrodynamic (MHD) simulations (e.g., Testa et al. 2012). In
practice, we have only 2D images in multiple wavelengths
available to determine the thermal energy. While the lateral
extent (in the [x,y]-plane) of flare-related emission in EUV and
soft X-rays can be accurately measured for instruments with
high spatial resolution, such as with the Atmospheric Imaging
Assembly (AIA)/Solar Dynamics Observatory (SDO), the
line-of-sight column depth (in the z[ ]-direction) is subject to
geometric models. Moreover, the differential emission measure
(DEM) distribution can only be determined as an integral along
any line-of-sight, and thus the thermal inhomogeneity and
filling factors along the line-of-sight add additional uncertain-
ties. Nevertheless, the currently available high-resolution and
multi-wavelength capabilities of AIA/SDO provide unprece-
dented possibilities to model the 3D flare plasma distribution
with much higher fidelity than previous instruments from the
SMM, SOHO, TRACE, and STEREO missions. It is therefore
timely to attempt a statistical study of magnetic and thermal
energies using AIA and HMI data from the SDO.

The content of this Paper II includes a description of the data
analysis methods to determine multithermal flare energies
(Section 2 and Appendix), a presentation of observations and
results (Section 3 and Tables 1 and 2), discussions of problems
pertinent to the determination of thermal energies (Section 4),

and conclusions about thermal and magnetic flare energies
(Section 5).

2. DATA ANALYSIS METHODS

2.1. AIA/SDO Temperature Filters

The temperature and density analysis carried out here uses
EUV images from the AIA (Boerner et al. 2012; Lemen et al.
2012) onboard the SDO spacecraft (Pesnell et al. 2011). AIA
contains 10 different wavelength channels, three in white light
and UV, and seven EUV channels, whereof six wavelengths
(94, 131, 171, 193, 211, 335 Å) are centered on strong iron
lines (Fe VIII, IX, XII, XIV, XVI, XVIII), covering the coronal range
from »T 0.6 to16 MK. The 304 Å (He II) filter was not used
because it is mostly sensitive to chromospheric temperatures of

»T 10e
4.7, which is outside of the range of interest for the flare

study here. The calibration of the response functions has
changed somewhat over time. Early on in the mission, the
response of the 94 and 131 Å channels was underestimated (see
Figure 10 in Aschwanden & Boerner 2011). Here we will use
the currently available calibration, which was updated with
improved atomic emissivities according to the CHIANTI
Version 7 code, distributed in the Solar SoftWare (SSW) on
2012 February 13.

2.2. Gaussian Differential Emission Measure Distribution
Function

The measurement of the thermal energy =E n k T V3 e B eth of
an (isothermal) flare plasma requires the determination of the
electron density ne, the electron temperature Te, and the flare
volume V. From multi-wavelength observations it is customary

Table 1
Thermal Energy Parameters of 28 X-class Flare Events

# Flare GOES Helio- Length Peak EM-weighted Electron Emission Thermal
Start Time Class Graphic Scale Temperature Temperature Density Measure Energy

Position L Tp Tw nlog ( )e log(EM) Eth

(Mm) (MK) (MK) (cm−3) (cm−3) (1030 erg)

12 20110215 0144 X2.2 S21W12 28.4 15.9 27.9 10.8 49.9 82.2
37 20110309 2313 X1.5 N10W11 34.8 5.6 22.5 10.6 49.7 84.7
61 20110809 0748 X6.9 N14W69 28.9 15.9 28.4 10.9 50.2 128.9
66 20110906 2212 X2.1 N16W15 24.5 15.9 25.4 10.8 49.7 52.2
67 20110907 2232 X1.8 N16W30 37.4 28.2 28.9 10.6 50.0 140.6
107 20111103 2016 X1.9 N21E64 26.2 25.1 33.2 10.8 49.8 76.4
132 20120127 1737 X1.7 N33W85 46.0 6.3 14.8 10.4 49.8 107.3
136 20120305 0230 X1.1 N19E58 29.7 14.1 33.9 10.7 49.8 92.9
147 20120307 0002 X5.4 N18E31 44.9 14.1 21.8 10.6 50.3 208.4
148 20120307 0105 X1.3 N18E29 36.0 4.0 22.7 10.5 49.7 89.8
209 20120706 2301 X1.1 S13W59 20.4 5.6 28.5 10.8 49.5 33.2
220 20120712 1537 X1.4 S15W03 36.3 6.3 24.2 10.6 49.8 105.3
248 20121023 0313 X1.8 S13E58 10.4 15.9 34.1 11.1 49.4 11.5
286 20130513 1548 X2.8 N08E89 23.6 17.8 33.3 10.9 49.9 70.9
287 20130514 0000 X3.2 N08E77 29.9 15.9 28.5 10.8 50.1 109.5
288 20130515 0125 X1.2 N10E68 22.6 5.6 27.1 10.7 49.5 40.8
318 20131025 0753 X1.7 S08E73 11.4 28.2 29.1 11.1 49.3 10.9
320 20131025 1451 X2.1 S06E69 17.0 4.0 30.5 10.9 49.4 24.6
330 20131028 0141 X1.0 N05W72 15.9 15.9 32.0 10.9 49.5 23.3
337 20131029 2142 X2.3 N05W87 23.9 22.4 30.3 10.8 49.8 53.7
344 20131105 2207 X3.3 S08E44 12.0 25.1 32.8 11.1 49.4 14.7
349 20131108 0420 X1.1 S11E11 20.8 25.1 30.2 10.9 49.8 43.0
351 20131110 0508 X1.1 S13W13 22.0 17.8 33.3 10.9 49.8 54.5
358 20131119 1014 X1.0 S13W69 18.3 20.0 30.7 10.9 49.6 31.4
384 20140107 1804 X1.2 S12E08 3.0 1.8 25.1 11.4 48.2 0.4
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to calculate the DEM distribution function, which can be
integrated over the coronal temperature range and yields a total
emission measure = n VEM e

2 , providing a mean electron
density ne (for unity filling factor) and a mean DEM peak
temperature Te. The inference of the DEM can be accomplished
either by inversion of the observed fluxes using the
instrumental response functions, or by forward-fitting of a
suitable functional form of a DEM distribution function. DEM
inversion methods are often unstable (Craig & Brown 1976;
Judge et al. 1997; Testa et al. 2012; M. J. Aschwanden
et al. 2015, in preparation), while forward-fitting methods are
generally more robust, but require a suitable parameterization
of an analytical function that has to satisfy an acceptable
goodness-of-fit criterion. A comparison of 10 DEM inversion
and forward-fitting methods has been conducted in a recent
study with simulated DEMs, using AIA, EVE, RHESSI, and
GOES response functions (M. J. Aschwanden et al. 2015, in
preparation), where the performance of recent DEM methods is
discussed in more detail.

One of the most robust choices of a DEM function with a
minimum of free parameters is a single Gaussian (in the
logarithm of the temperature), which has three free parameters
only and is defined by the peak emission measure EMp, the
DEM peak temperature Tp, and the logarithmic temperature
width wT, where the DEM parameter has the cgs-units of
cm−5 K−1,

= =

æ

è

ççççççç
-
é
ëê - ù

ûú
ö

ø

÷÷÷÷÷÷÷÷

( )
T n

dz

dT

T T

w
DEM( ) EM exp

log( ) log

2
, (1)e p

p

T

2

2

2

where the line-of-sight emission measure =d n dzEM e
2 is the

temperature integral over the Gaussian DEM (in units of cm−5,

ò= T dTEM DEM( ) . (2)

The Gaussian DEM (Equation (1)) can be forward-fitted to the
preflare background-subtracted observed fluxes lf in multiple

wavelengths λ,

ò
å

= - =

= D

l l l l

l
=

( ) ( )

f t F t B t T R T dT

T R T T

( ) ( ) ( ) DEM( ) ( )

DEM , (3)
k

n

k k k
1

T

where lF are the observed fluxes (in units of DN s−1) in the
wavelengths λ = 94, 131, 171, 193, 211, 335 Å, lB are the
observed background fluxes, lf are the background-subtracted
fluxes, integrated over the entire flare area, lR T( ) is the
instrumental response function of each wavelength filter λ (in
units of DN s−1 cm5 per pixel), and the temperature integration
is using discretized temperature intervals DTk, which generally
are chosen to be equidistant bins of the logarithmic temperature
range.
In our DEM forward-fitting algorithm we use a temperature

range of = -T 0.5 30p MK that is subdivided equi-distantly
into 36 logarithmic temperature bins DTk, and a Gaussian
temperature width range with 10 values in the range of

= -w 0.1 1.0T . At the same time, the DEM peak emission
measure value EMp is evaluated from the median ratio of the
observed to the model (background-subtracted) fluxes,

=
é

ë

ê
ê
ê

å

å

ù

û

ú
ú
ú

l l

l l

f

f
EM EM , (4)p 0

obs

fit

where =EM 10 cm-5 K−1 is the unity emission measure. The
best-fitting values of the peak emission measure EMp, the peak
temperature Tp and temperature width wT are found by a global
search in the 2-parameter space T w[ , ]T and by adjustment of
the peak emission measure value EMp. The best-fit solution is
then evaluated by the goodness-of-fit criterion (e.g., Bevington
& Robinson 1992),

åc
s
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é

ë

ê
ê
ê
ê
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( )

1 ( ) ( )

( )
, (5)

n

free 1

fit obs 2

2

1 2

Table 2
Thermal Energy Parameters of 391 M- and X-Class Flare Events

# Flare GOES Helio- Length Peak EM-weighted Electron Emission Thermal
Start Time Class Graphic Scale Temperature Temperature Density Measure Energy

Position L Tp Tw nlog ( )e log(EM) Eth

(Mm) (MK) (MK) (cm−3) (cm−3) (1030 erg)

1 20100612 0030 M2.0 N23W47 13.2 6.3 18.6 10.8 48.9 7.0
2 20100613 0530 M1.0 S24W82 12.2 7.1 15.8 10.7 48.6 4.1
3 20100807 1755 M1.0 N13E34 25.1 4.0 6.2 10.4 49.1 8.2
4 20101016 1907 M2.9 S18W26 15.1 14.1 29.9 10.9 49.4 19.2
5 20101104 2330 M1.6 S20E85 13.8 10.0 24.9 10.8 49.0 10.2
6 20101105 1243 M1.0 S20E75 13.3 6.3 19.8 10.8 48.9 7.7
7 20101106 1527 M5.4 S20E58 20.3 4.0 20.9 10.7 49.4 24.6
9 20110209 0123 M1.9 N16W70 8.2 3.2 28.5 11.0 48.7 3.4
10 20110213 1728 M6.6 S21E04 15.9 14.1 23.9 10.9 49.5 20.8
L L L L L L L L L L

(This table is available in its entirety in machine-readable form.)
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where lf
obs are the six observed flux values, lf

fit are the flux
values of the fitted Gaussian DEM (Equation (1)), sl are the
estimated uncertainties, = -ln n nfree par is the number of
degrees of freedom, which is =n 3free for =ln 6 the number
of wavelength filters and =n 3par the number of model
parameters.

In recent studies it is found that the dominant uncertainty in
fitting fluxes observed with AIA/SDO comes from the
incomplete knowledge of the AIA response functions, which
concerns missing atomic lines in the CHIANTI code as well as
uncertainties whether photospheric or coronal abundances of
chemical elements are more appropriate. The combined
uncertainty is estimated to be ≈10–25% of the observed AIA
fluxes in each wavelength (Testa et al. 2012; Boerner et al.
2014; M. J. Aschwanden et al. 2015, in preparation). This is
much more than the typical uncertainty due to photon count
statistics, which is of order» -- -10 104 3 for typical AIA count
rates (» -10 106 8 DN s−1) during flares (O’Dwyer et al. 2010;
Boerner et al. 2014). We thus perform the DEM forward-fitting
to the 6 wavelength fluxes by using the empirical 10% error of
the response functions as an estimate of the flux uncertainties
due to calibration and background subtraction errors,

s »l lf0.1 . (6)obs

2.3. Spatial Synthesis of Gaussian DEM Fitting

The choice of a suitable DEM function in forward-fitting
methods is almost an art. A Gaussian function (in the logarithm
of the temperature) appears to be a good approximation near
the peak temperature Tp of most DEM functions, but cannot
represent “shoulders” of the primary peak, or secondary peaks
at lower or higher temperatures. This is particularly a problem
for EUV images that have many different temperature
structures with competing emission measures in different areas
of the image, such as multiple cores of hot flaring regions,
surrounded by peripheral cooler regions. Therefore it is a
sensible approach in the DEM parameterization to subdivide
the image area of a flare into macropixels or even single pixels,
and then to perform a forward-fit of a (single-Gaussian) DEM
function in each spatial location separately, while the total
DEM distribution function of the entire flare area can then be
constructed by summing all DEM functions from each spatial
location, which we call the “Spatial Synthesis DEM” method.
This way, the Gaussian approximation of a DEM function is
applied locally only, but can adjust different peak emission
measures and temperatures at each spatial location. Such a
single-pixel algorithm for automated temperature and emission
measure analysis has been developed for the six coronal AIA
wavelength filter images in Aschwanden et al. (2013), and a
SSW/IDL code is available online (http://www.lmsal.com/
~aschwand/software/aia/aia_dem.html). The flux lF x y t( , , ) is
then measured in each pixel location x y[ , ] and time t, and the
fitted DEM functions are defined at each location x y[ , ] and
time t separately,
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p
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w x y t

log( ) log [ , , ]

2 [ , , ]

p

T

2

2

and are forward-fitted to the observed fluxes lF x y t( , , ) at each
location (x,y) and time t separately,

ò
å

- =

= D

l l l

l
=

( ) ( )

F x y t B x y t T x y t R T dT

T x y t R T T

( , , ) ( , , ) DEM( ; , , ) ( )

DEM ; , , . (8)
k

n

k i j k k
1

T

The synthesized differential emission measure distribution
DEM(T) can then be obtained by summing up all local DEM
distribution functions T x y tDEM( ; , , ) (in units of cm−3 K−1),

ò ò
å

=

= ( )
T t T x y t dxdy

T x y t dx dy

DEM( , ) DEM( ; , , )

DEM ; , , , (9)
i j

k i j i j
,

and the total emission measure of a flaring region is then
obtained by integration over the temperature range (in units of
cm−3),

ò å= = D( )t T t dT T t TEM( ) DEM( , ) DEM , . (10)
k

k k k

Note that the synthesized DEM function DEM(T) (Equa-
tion (9)) generally deviates from a Gaussian shape, because it
is constructed from the summation of many Gaussian DEMs
from each pixel location with different emission measure peaks

x yEM ( , )p i j , peak temperatures T x y( , )p i j , and thermal widths

w x y( , )T i j . This synthesized DEM function can be arbitrarily
complex and can accomodate a different Gaussian DEM
function in every spatial location x y( , )i j .
Typically we process images with a field-of-view (FOV) of

FOV = 0.35 solar radii, which corresponds to about 520
AIA pixels. Subdividing these images into macropixels with a bin
size of four full-resolution pixels, we have a grid of
130 × 130macropixels x y[ , ]i j and perform =130 16,9002

single-Gaussian DEM fits per time frame, per wavelength set,
and per event. We illustrate the spatial synthesis procedure with
single-Gaussian DEMs in Figure 1, where we can see that the
local temperature discrimination yields a higher temperature
contrast for increasingly smaller macropixels, from

=N 512, 256, 128, 64, 32, 16, 8, 4bin down to 2 image pixels.
The convergence of the DEM with decreasing bin size is depicted
in Figure 2, for three different times of a flare. The initial single-
Gaussian DEM function fitted to the fluxes of a 512 × 512 pixel
area (blue curves in Figure 2) converges to a double-peaked
DEM at the flare peak time (red curve in middle panel of
Figure 2), synthesized from 2 × 2macropixels, which evolves
then into a broad single-peaked DEM in the postflare phase (red
curve in the bottom panel of Figure 2).

2.4. Flare Geometry

The total emission measure EM of a flaring active region,
such as defined for a single Gaussian DEM (Equation (2)) or
for a spatially synthesized DEM as defined in Equation (10),
yields the product of the squared mean electron density times
the flare volume. If we can estimate the flare volume V from the
imaging information, we can then infer the mean electron
density (for unity filling factor). There are many ways to
measure a flare area. Two major problems are the choice of a
suitable wavelength (in multi-temperature data), and secondly

4
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the choice of a threshold, especially in flares that have a large
dynamic range of fluxes over several orders of magnitude.

In order to eliminate the choice of wavelengths, we use the
emission measure maps T x y tDEM ( ; , , )p (Equation (7)),
where we find a range of = ´ - ´DEM 8.2 10 2.7 10p

22 25

cm−5 K−1 for the peak values. We choose an emission measure

threshold near the lower bound of this range, i.e.,
=DEM 10p,min

23 cm−5 K−1, unless this threshold exceeds the
50% level of the peak emission measure, in which case we use
the 50% level. This way, a flare area is always defined, even for
flares with low emission measures. We measure then the flare
area A of thermal emission by counting the number

Figure 1. The spatial synthesis DEM method is visualized by single-Gaussian DEM fits in a grid x y[ , ]i j , = ¼ = ¼i n j n1, , , 1, ,bin bin of spatial positions
with macropixels of bin size D = = ¼x n512 512, 256, , 2bin . Each macropixel shows a Gaussian DEM fit to the six coronal AIA wavelengths, covering a
temperature range of Tlog ( ) = 5.8–7.45 and emission measure range of =TDEM( ) 1047–1057 cm−5 K−1. The colorscale is proportional to the logarithmic DEM peak
temperature Tp, with blue at =T 10p

5.8 K and white at =T 107.45 K. The data are obtained from event #12, a GOES X2.2-class flare observed with AIA on 2011
February 15, 01:40 UT.
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of macropixels above the threshold in an emission measure
map x yEM ( , )p , which multiplied with the macropixel size

yields an area A (in units of cm2), a length scale =L A1 2, and
a flare volume = =V L A3 3 2.

One problem that we encountered in our analysis is that the
flare area at the peak time =t tp is sometimes largely inflated
due to saturation of the EUV CCD, pixel bleeding, and
diffraction patterns, and thus no reliable flare area Ai can be
measured at the flare peak time ti. Since the automated
exposure control alternates between short and long exposure
times during saturation, an over-exposed time frame (with flare
area Ai at the peak time ti) is interpolated from the preceding
time step (with flare area -Ai 1 at time -ti 1) and the following
time step (with flare area +Ai 1 at time +t )i 1 . In the derivation of

geometric parameters in this study we use the maximum flare
area =A A tmax [ ( )] measured during the flare duration
interval.

2.5. Multi-thermal Energy

If we substitute the expression of the total emission measure
at the peak time tp of the flare, = n VEM p p

2 , into the
expression for the thermal energy Eth, we have the relationship

= =( )E t n k T V k T V3 3 EM . (11)p p B p B p pth

This expression is accurate only if the DEM function is a delta-
function with a small thermal width wT, which can then be
characterized by the peak emission measure EMp at the DEM
peak temperature Tp.
For every broad temperature DEM distribution DEM(T), as

it is the case for most solar flares, it is more accurate to perform
the temperature integral (or summation over discrete tempera-
ture incrementsDTk, which may be logarithmically binned). In
the discretized form, the emission measure EMk is integrated
over the temperature intervalDTk is = DT TEM DEM( )k k k, and
the thermal energy can be written as a summation of partial
thermal energies from each temperature interval + DT T T[ , ]k k k

(see the Appendix),

å

å

=

= é
ë D ù

û( )

E k V T

k V T T T

3 EM

3 DEM . (12)

k
B k k

B
k

k k k

th
1 2 1 2

1 2 1 2

While the DEM peak temperatures Tp were determined within the
parameter space of = -T 0.5 30p MK, the temperature integral of
the thermal energy (Equation (12)) was calculated in an extended
range of = -Tlog ( ) 5.0 8.0e , in order to fully include the
Gaussian tails of the DEM fits in each macropixel. This yields a
more accurate value of the total multithermal energy, since it
avoids a truncation at the high-temperature tail of the composite
DEM distribution. Note that we defined the thermal energy in
terms of the volume-integrated total emission measure
( ò ò= = =T dT n dV n VEM DEM( ) e e

2 2 (in units of cm−3),
in contrast to the column depth integrated emission measure per
area, ò ò= = =A T A dT n dz n LEM DEM( ) e e

2 2 (in units of
cm−5) used in the spatial synthesis method (Equation (7)), where
the emission measure is quantified per unit area or per
image pixel (see the detailed derivation in the Appendix). We
find that the more accurate expression of Equation (12) typically
yields a factor of»14 higher values for the thermal energies than
the single-temperature approximation of Equation (11), and thus
represents a very important correction for broad multi-tempera-
ture DEMs.
Considering the more complex DEM functions obtained

from spatial synthesis with Equation (9), we will see that the
DEM function often has multiple peaks, and thus it no longer
makes any sense to talk about a single peak emission measure
EMp and single peak temperature Tp. In order to characterize
such complex DEM functions with a characteristic temperature
value, it makes more sense to define an emission measure-

Figure 2. Spatial convergence of DEM distribution functions (from case
shown in Figure 1), as a function of the macro-pixel size, from Nbin = 512
(blue) to =N 2bin (red), using the spatial synthesis DEM method, shown for
three time steps during the 2011 February 15 flare, at flare start 01:50 UT (top
panel), at flare peak 01:56 UT (middle panel), and in the postflare phase at
02:32 UT (bottom panel).
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weighted temperature Tw, which we define as,

ò
ò

= =
å D( )

T
T T dT

T dT

T T TDEM( )

DEM( )

DEM

EM
. (13)w

k k k k

and approximately characterizes the “centroid” of the DEM
function.

3. OBSERVATIONS AND RESULTS

3.1. AIA Observations

The dataset we are analyzing for this project on the global
energetics of flares includes all M- and X-class flares observed
with the SDO during the first 3.5 yr of the mission (2010 June 1
to 2014 January 31), which amounts to 399 flare events, as
described in Paper I (Aschwanden et al. 2014a). The catalog of
these flare events is available online, see http://www.lmsal.
com/~aschwand/RHESSI/flare_energetics.html. We attempt
to calculate the thermal energies in all 399 cataloged events,
but we encountered eight events with incomplete or corrupted
AIA data, so that we are left with 391 events suitable for
thermal data analysis.

AIA provides EUV images from four 4096 × 4096 detectors
with a pixel size of 0″.6, corresponding to an effective spatial
resolution of ≈1″.6. We generally use a subimage with a FOV
of = RFOV 0.35 . AIA records a full set of near-simulta-
neous images in each temperature filter with a fixed cadence of
12 s, while our analysis of the flare evolution is done in time
increments ofD =t 0.1 hr. This cadence may underestimate the
maximum thermal energy during a flare in some cases, but is
estimated to be less than a factor of 2.

3.2. Example of DEM Analysis

An example of our DEM analysis is summarized in Figure 3,
which applies to the first event (#1) of our list, a GOES M2.0
class flare in active region NOAA 11081 at N23 W47,
observed with AIA/SDO on 2010 June 12, 00:00–01:30 UT.
The GOES 1–8 Å light curve is shown in Figure 3(a), with
GOES flare start time at ts = 00:30 UT, peak time at
tp = 00:58 UT, and flare end time at te = 01:02 UT, according
to the NOAA event list. The flare end time te is defined when
the GOES flux drops down to 50% of the peak value, according
to NOAA convention, but flare-related EUV emission always
lasts significantly longer. In our thermal analysis we add
margins of D =t 0.5 hr before and after the NOAA flare start
and end times, which covers the time interval of
00:00–01:32 UT in this event. We use a cadence of
dt = 0.1 hr, which yields 14 time frames for this event. The
six AIA flux profiles are shown in Figure 3(b), which show a
very simple evolution of a single peak in all 6 EUV
wavelengths, coincident with the SXR peak in GOES time
profiles. The peak time occurs in time frame it = 10, at
00:58 UT. Flare background fluxes have been subtracted in
every spatial macropixel (4 × 4 image pixels) separately
(according to Equation (8)). Because every macropixel has a
different background value lB x y t( , , )b , the summation of all
background subtracted profiles -l lF x y t B x y t( , , ) ( , , ) leaves
residuals that amount to a fraction of ≈0.05–0.5 of the peak
flux (see the preflare time profile of spatially-summed fluxes in
Figure 3(b)).

For the DEM analysis we read 14 (time frames) times 6
(wavelength) AIA images, extract subimages within a

FOV = 0.35 solar radii, which amount to a size of about
522 pixels, we rebin the images into 4 × 4 macropixels,
yielding a spatial 2D array x y( , )i j of 130 × 130 macropixels,
subtract in each macropixel a temporal minimum flux
background, forward-fit a Gaussian DEM function in each
macropixel, which yields the three Gaussian parameters: the
DEM peak emission measure x yEM ( , )p i j , DEM peak
temperature T x y( , )p i j , and thermal width w x y( , )T i j , or a
Gaussian DEM function T x yDEM( ; , )i j (Equation (7)) for
each macropixel. Summing the 130 × 130 = 16,900 single-
Gaussian DEMs yields then a spatially synthesized DEM
function that is shown in Figure 3(f) for each time step
= ¼i 1, , 14t . The evolution of the DEM peak starts from a

DEM peak temperature of = = =T i( 1) 10 2.5p t
6.4 MK and

peaks at a value of = = =t i( 10) 10 6.3p t
6.8 MK, and

decreases again to the preflare value. The evolution of this
peak temperature Tp(t) is also shown in Figure 3(c), along with
the evolution of the mean temperature Te(t), the mean electron
density =n t t V( ) EM ( )e p , and the thermal energy Eth(t)
(Equation (12)), in normalized units. The spatial distribution of
the emission measure map x yEM ( , )p i j is shown in Figure 3(e),
where instrumental diffraction patterns (diagonal features)
and pixel bleeding (vertical feature) are visible also at the flare
peak time. Since these instrumental effects are mostly a spatial
re-distribution of photons inside the FOV of the observed
image, we expect that they do not greatly affect the obtained
DEM function after spatial integration. The emission measure
maps serve to measure a wavelength-independent flare area A
at the flare peak time (above some threshold; Section 2.4),
which yields the equivalent length scale =L A1 2. The physical
parameters obtained for this event at the flare peak time are
listed in Figure 3 (bottom right). Note that the peak
temperature is only Tp = 6.31MK, while the emission
measure-weighted temperature Tw = 18.57MK (Equation
(13)) is substantially higher. The flare length scale (indicated
with a square in Figure 3(e)) is L = 13.2 Mm, the electron
density is = = ´n VEM 5.8 10e p

10 cm−3, and the thermal

energy is = ´E 7.0 10th
30 erg for this event.

The goodness-of-fit or reduced c2-criterion of the DEM fit
yields a mean and standard deviation of c = 0.24 0.432 for
the 14 DEM fits of this particular event #1 (Figure 3). As
mentioned before (Section 2.2), the calculation of the reduced
c2-criterion is based on the estimated uncertainty of the
observed AIA fluxes, which is dominated by the incomplete
knowledge of the instrumental response functions, estimated to
be of order ≈10–25% (Testa et al. 2012; Boerner et al. 2014).
Although the c2-value found for this particular event is
relatively low, compared with the mean statistical expectation,
it fits into the broad range of the obtained overall statistical
distribution. In Figure 6(g) we plot the distribution of the c2

-values of the 391 fitted flare events, where the c2 value of each
flare event is a time average, as well as a spatial average (using
the spatial synthesis method). The peak of this distribution is
near c » 12 and the median is c » 1.32 (Figure 6(g)), which
indicates that the chosen model of the DEM parameterization
(Equation (1)) yields a best fit that is consistent with the
empirical estimates of uncertainties in the flux or response
functions (Equation (6)). Of course, the Gaussian DEM
parameterization, even when individually fitted in each pixel,
may not always represent the best functional form of observed
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DEMs, which may explain some c2-values significantly larger
than unity. A more accurate goodness-of-fit test would require
a more complex parameterization of the DEM function and a
physical model of the flux uncertainties sl, which should

include systematic uncertainties due to the AIA flux calibration,
the atomic (coronal and photospheric) abundances, the atomic
transitions (computed with the CHIANTI code here), and the
background subtraction method, which is not attempted here.

Figure 3. A summary of the DEM modeling of event #1, a GOES M2.0-class flare observed with AIA on 2010 June 12, 00:00 UT: (a) GOES 1–8 Å light curve with
flare peak time (solid vertical line), start and end times (dashed vertical lines; (b) the background-subtracted light curves in the six coronal EUV channels from AIA/
SDO (normalized to unity); (c) the evolution of physical parameters; (d) a -T ne e phase diagram (with the RTV equilibrium indicated by a dashed line); (e) emission
measure map x yEM( , ) at the flare peak; (f) the spatial-synthesized DEM functions for all 14 time steps, with the emission measure maximum at time step 10; and the
values of physical parameters at the flare peak time (bottom right).
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Figure 4. Differential emission measure distributions DEM(T) of 12 extremal flares, calculated with the spatial synthesis DEM method, are shown in evolutionary
time steps of dt = 0.1 hr. The color scale indicates the transition from preflare (blue) to flare peak time (red) and postflare phase (yellow). The DEM peak
temperatures Tp at the peak time tp of the flare (red arrow) and the emission measure-weighted temperatures tw (red solid arrow) are indicated in units of MK.
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3.3. DEM Functions of Extreme Events

In Figure 4 we show the DEM distributions DEM(T) of 12
extreme events among the 391 analyzed M- and X-class flare
events. These 12 events were selected by the minimum and
maximum values in the parameters of the length scale L
(Figures 4(a), (b)), the DEM peak temperature Tp (Figures
4(c), (d)), the emission measure-weighted temperature Tw
(Figures 4(e), (f)), the electron density ne (Figures 4(g), (h)),
the DEM peak emission measure EM (Figures 4(i), (j)), and
flare duration D (Figures 4(k), (l)). This selection of extreme
events demonstrates the variety and diversity of DEM functions
we encountered among the analyzed flare events. It shows also
the versatility and adequacy of the DEM parameterization
using spatially synthesized (single-Gaussian) DEM functions.

The length scales of thermal emission vary from =L 1.7min
Mm (#256; Figure 4(a)) to =L 45.9max Mm (#132;
Figure 4(b)). What is striking between the evolution of these
two events is that the flare with the smallest size shows very
little increase in the emission measure at any temperature,
while the largest flare exhibits a large increase in the high-
temperature emission measure.

For the peak temperatures we find a range from Tp = 0.5 MK
(#305; Figure 4(c)) to Tp = 28.1MK (#67; Figure 4(d)),
which is not necessarily coincident with the emission measure-
weighted temperature Tw. This is clearly shown in the case with
the smallest peak temperature, which is far below the emission
measure-weighted temperature of peaks in the DEM, which can
make the peak temperature to jump around wildly as a function
of time, as long as their associated DEM peak emission
measures are comparable. This is a major reason why the DEM
peak temperature should not be used in the estimate of thermal
energies, but rather the emission measure-weighted temperature
that is a more stable characteristic of the DEM function.

For the emission measure-weighted DEM function we find a
range from Tw = 5.7 MK for the coldest flare (#102;
Figure 4(e)) to Tw = 41.6MK for the hottest flare (#316;
Figure 4(f)), which is close to the upper limit of the
temperature range where AIA is sensitive. The coldest flare
in our selection with Tw = 5.7 MK is a M1.3 GOES class, while
the hottest flare with Tw = 41.6MK is a M3.5 GOES class. The
GOES class does not necessarily correlate with the flare
temperature, which is expected since the GOES class is mostly
defined by the emission measures (in soft X-rays) rather than
by the temperature.

For the electron density we find a range from =n 10e
10.31

cm−3 (#396; Figure 4(g)) to =n 10e
11.77 cm−3 (#375;

Figure 4(h)), which corresponds to a variation by a factor of
»30. The lowest density corresponds to a low peak temperature
(Tp = 1.6MK), while the highest density yields a high peak
temperature temperature (Tp = 29.5 MK). For a fixed loop
length, a correlation between the electron density and the
electron temperature is expected according to the RTV scaling
law, i.e., µn Tp p

2 (Equation (21)).
For the DEM peak emission measure we find a variation

from =EM 10p
47.31 cm−5 (#241; Figure 4(i)) to

=EM 10p
50.26 cm−5 (#147; Figure 4(j)), which varies by a

factor of ≈1000. The corresponding GOES classes are M1.3
and X5.4, which are both near the limits of the GOES class
range (M1.0–X6.9) found in our selection. The event with the
largest emission measure represents the second-largest GOES

class (X5.4) in our selection, and thus the GOES class is indeed
a good proxy to estimate the emission measure of flares.
The time range of flare durations is found to vary from

D = 0.1 hr (#56; Figure 4(k)) to D = 4.1 hr (#130;
Figure 4(l)). The longest duration event, however, does not
have extreme values in temperature, emission measure, or
length scale.

3.4. Statistics of Physical Parameters

We provide some statistics on the derived thermal
parameters, such as the length scale L, the thermal volume V,
the DEM peak temperature Tp, the emission measure-weighted
temperature Tw, the electron density ne, the total emission
measure EM, and the thermal energy Eth, in form of scatterplots
(Figure 5) and size distributions (Figure 6). The inferred
physical parameters are listed for the 28 X-class flares in
Table 1, and for all 391M- and X-class flares in the machine-
readable Table 2. The ranges of these physical parameters have
already been discussed in terms of extreme values in
Section 3.3. The scatterplots shown in Figure 5 reveal us
which parameters are correlated and indicate simplified scaling
relationships, while the size distributions shown in Figure 6
reveal us the powerlaw tails that are typical for dissipative
nonlinear systems governed by self-organized critical-
ity (SOC).
The scatterplots shown in Figure 5 indicate that the thermal

energy is correlated with the length scale L by the scaling
relationship (Figure 5(a)),

µ E L , (14)th
2.3 0.1

and consequently is correlated with the volume V (Figure 5(b))
also,

µ E V , (15)th
0.76 0.04

and is correlated also with the total emission measure EM
(Figure 5(f))

µ E EM , (16)th
1.27 0.10

but strongly anti-correlated with the electron density ne
(Figure 5(e)), and is not correlated with the temperatures Tp
(Figure 5(c)) and Tw (Figure 5(d)).
Regarding the size distributions, the fractal-diffusive self-

organized criticality (FD-SOC) model provides predictions for
the size distributions (Aschwanden 2012; Aschwanden
et al. 2014b). The most fundamental parameter in the FD-
SOC model is the length scale L, which according to the scale-
free probability conjecture is expected to have a size
distribution µ -N L L( ) d for Euclidean space dimension d.
We find agreement between this theory and the data within the
uncertainties of the fit (Figure 6(a)),

a a=  =3.3 0.3, 3.0. (17)L L
obs theo

For the volume V of thermal emission, the FD-SOC model
predicts a powerlaw slope of a = + -d d1 ( 1)V , and we
find good agreement (Figure 6(b)),

a a=  =1.7 0.2, 1.67. (18)V V
obs theo
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For the energy E, using the observed scaling, i.e., µ gE Vth with
g = 0.76 (Equation (15)), we expect then a size distribution of

µ é
ë

ù
û µ g- +( ) ( )N E dE N V E dV dE dE E ,th th th th th th

(1 (2 3) )

which predicts a powerlaw slope of a =E th

g+ »[1 (2 3) ] 1.88,which is indeed consistent with the

observed slope,

a a=  =1.8 0.2, 1.88. (19)E E
obs theo

We have to keep in mind that the FD-SOC model is a very
generic statistical model that predicts a universal scaling law
for spatial parameters, based on the scale-free probability

Figure 5. Scatter plot ot the thermal energy Eth as a function of physical parameters L V T T n, , , , , EMp w e p of the analyzed 391 M- and X-class flares. Linear
regression fits (solid lines) are indicated with 1-σ uncertainties corresponding to the 67% confidence level (dashed lines).
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conjecture, i.e., µ -N L L( ) d (Aschwanden 2012), while the
scaling of other physical parameters, such as the energy,

µ gE Vth , requires a physical model that is specific to each
SOC phenomenon. In the next section we will discuss the
Rosner–Tucker–Vaiana (RTV) scaling law, which we apply to
model the otherwise unknown scaling of the energy with the
volume, µ gE Vth .

3.5. The Rosner–Tucker–Vaiana Scaling Law

A well-known physical scaling law between hydrodynamic
parameters of a coronal loop is the Rosner–Tucker–Vaiana law

(Rosner et al. 1978), which is derived under the assumption of
energy balance between the energy input by a volumetric
heating rate Eh (in units of erg cm−2 s−1) and the radiative ER

and the conductive loss rates EC, i.e., - - =E E E 0H R C ,
which yields two scaling laws between the loop length L, loop
apex electron temperature Te, average electron density ne, and
heating rate EH. While this original derivation applies to a
steady-state of a heated coronal loop, it turned out that the same
scaling laws apply also to solar flares at the heating/cooling
turnover point (Aschwanden & Tsiklauri 2009). Solar flares are
generally not heated under steady-state conditions, except at the
turning point of maximum temperature, when the heating rate

Figure 6. Size distributions of the physical parameters L V T n, , , , EMw e and Eth for the 391 analyzed M- and X-class flares. A powerlaw function is fitted in the range
indicated with dotted vertical lines. The reduced c2 distribution peaks near 1.0 and has a median of 1.3.
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and the radiative and conductive losses are balanced for a short
instant of time. Before reaching this turning point, heating
dominates the cooling losses, while the cooling dominates after
this turning point.

We can express the RTV scaling laws explicitly for the
parameters T n L E, , , EM,e e th (Aschwanden & Shimizu 2013),

= = ´ -T c n L c, 1.1 10 , (20)eRTV 1
1 2 1 2

1
3

= = ´-n c T L c, 8.4 10 , (21)eRTV 2
2 1

2
5

= = ´-L c T n c, 8.4 10 . (22)e eRTV 3
2 1

3
5

ò= = = =

= ´

( )n dV n V n L c T L

c

EM ,

1.48 10 . (23)

e e e
π

eRTV
2 2 2 2

3
3

4
4

4
12

= = = ´ -E n k T V c T L c3 , 7.3 10 . (24)e B e eth,RTV 5
3 2

5
10

We can then compare the observed parameters
T n L E, , , EM,e e th with these theoretically predicted parameters
T n L E, , , EM ,RTV RTV RTV RTV th,RTV, which is shown in Figure 7.
Note that we use the weighted temperature Tw and the emission
measure EMp and density np measured at the peak time tp of the
flare here. While the original RTV scaling law has no free
parameters, the scaling between the average loop half length
Lloop (required for the RTV scaling law) and the average length
scale L (measured here during the flare duration) requires a
geometric model, as well as information on filling factors and
fractal geometry. Since detailed modeling of the 3D geometry
of flare loop configurations is beyond the scope of this study,
we determine the average scaling ratio empirically and find that
a relationship of »L π L(2 ) loop yields a satisfactory match
between the observed and the theoretically predicted physical
parameters of the RTV scaling law (indicated with the dotted
diagonal line expected for equivalence in Figure 7).

We see now that the three-parameter RTV scaling laws
(Figure 7) retrieve the relationships obtained from 2-parameter
correlations (Figure 5). The correlation of the thermal energy
with length scale, µ E Lth

2.3 0.1 (Equation (14); Figure 5(a))
is similar to the RTV relationship µE Lth

2 (Equation 24),
which is equivalent to the relationship with the volume, i.e.,

µ E Vth
0.76 0.04 (Equation (15); Figure 5(b)) and the RTV

relationship µ µE L Vth
2 2 3 (Equation (24)). Combining the

RTV relationships between Eth (Equation (24)) and EM
(Equation (23)) we obtain µE L TEM ( )pth , which is similar

to the observed two-parameter correlation µ E EMth
1.3 0.1.

Thus the two-parameter correlations are approximations of the
three-parameter (RTV) scaling laws, and thus can be explained
by a physical model, although they are less accurate because of
the neglected third parameter. Comparing the observed and
RTV-predicted values (as shown in Figure 7), we find that the
(multi-)thermal energies Eth,RTV, emission measures EMRTV,
and length scales LRTV are correlated with the observed values
within a standard deviation, while the temperature TRTV and
density nRTV deviate more than a standard deviation, which is
likely to be caused by their smaller ranges of values and the
associated truncation effects (e.g., see calculation of truncation
effects in Figure 8 of Aschwanden & Shimizu 2013).

3.6. Comparison of Magnetic and Thermal Energies

The main goal of the global flare energetics project is the
comparison and partitioning of various flare energies. In Paper
I we calculated the dissipated magnetic energies in 172M- and
X-class flares, based on the (cumulative) decrease of free
energies during each flare, which were found to have a range of
Ediss = (1.5–1500) × 1030 erg. In this study we calculated the
thermal energy at the peak time of the total emission measure
and find a range of Eth = (0.15–315) × 1030 erg. A scatterplot
between the magnetic and thermal energies is shown in
Figure 8(a). From this diagram we see that the average ratio is

»E E 0.082th diss , with a standard deviation by a factor of 4.8,
which defines a typical range of E Eth diss = 0.02–0.40. Thus,
the thermal energy amounts generally only to a fraction of
≈2–40% of the dissipated magnetic energy, as determined with
the coronal NLFFF method.
We show also a scatterplot of the thermal energy with the

dissipated magnetic energy as computed with the photospheric
NLFFF method, which could be performed only for 12 events
(Figure 8(b)). In this samll dataset, the average ratio is
qe = 0.76, with a scatter by a factor of 6.5, or a range of »qe
0.12–4.8. In four out of the 12 events the thermal energy
exceeds the dissipated magnetic energy, which is likely to be a
false result due to underestimates of the dissipated magnetic
energy, since the PHOT-NLFFF code seems to be less sensitive
in measuring decreases of the free energy than the COR-
NLFFF code, possibly due to a smoothing effect caused by the
preprocessing procedure.
We compare the new results also with the previous study by

Emslie et al. (2012), where the thermal energy could be
determined for 32 large eruptive flares, while the magnetically
dissipated energy was estimated to be 30% of the potential
energy. In that study, the average ratio of the thermal to the
magnetically dissipated energy is found to be

»E E 0.0045th diss with a scatter by a factor of »2.3, which
yields a range of 0.2–1.0% (Figure 8(c)). Since the thermal
energies have a similar median value ( = ´E 4.6 10th,med

30

erg) as we find in this study ( = ´E 6.0 10th,med
30 erg), the

discrepancy is most likely attributed to an overestimate of the
magnetically dissipated energies, as well as to a selection effect
of larger flares. The median value of the magnetically
dissipated energy is = ´E 1300 10diss,med

30 erg in Emslie
et al. (2012), while we find a median value of

= ´E 110 10diss,med
30 erg, which is about an order of

magnitude lower, and goes along with our finding that the
free energy is about 1–25% of the potential free energy, rather
than 30% as assumed in the study of Emslie et al. (2012).

4. DISCUSSION

4.1. Previous Measurements of Thermal Flare Energies

Most previous studies estimated thermal flare energies by
using the isothermal relationship, i.e., =E k T V3 EMB p pth ,
which requires a DEM analysis (to obtain the peak emission
measure EMp and peak temperature Tp) and imaging observa-
tions (in order to obtain the flare area or volume V), measured
at the flare peak time. A DEM analysis requires multiple
temperature filters, and thus thermal flare energies can only be
obtained from instruments with multi-wavelength imaging
capabilities. Statistics of thermal energies was gathered for
large flares, nanoflares, and impulsive brightenings in EUV and
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soft X-rays from Skylab S-054 (Pallavicini et al. 1977),
Yohkoh/SXT (Aschwanden & Benz 1997; Shimizu 1997;
Shimojo & Shibata 2000), SoHO/EIT (Krucker & Benz 2000);
TRACE (Aschwanden et al. 2000; Aschwanden & Par-
nell 2002), RHESSI (Emslie et al. 2004, 2005, 2012; Caspi
et al. 2014), and AIA/SDO (Aschwanden & Shimizu 2013).

How consistent are the thermal energies determined here
with previous measurements? We compile some statistics on
thermal energy measurements in large flares in Table 3, by
listing the instruments, the number of events, and the parameter
ranges of the spatial scale L, the peak electron temperature Tp,
the peak electron density np, the peak emission measure EMp,

Figure 7. Observed (x-axis) and predicted physical parameters (y-axis) based on the Rosner–Tucker–Vaiana model. Linear regression fits (solid lines) and
uncertainties (dashed lines) are indicated, along with the line for equivalence (dotted line).
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and the thermal energy Eth. A scatterplot of thermal energies
Eth(V) versus the flare volumes V measured in large flares is
shown in Figure 9. In particular, statistics on large flares
(approximately GOES M- and X-class) has been analyzed in

31 events from Skylab S-054 (Pallavicini et al. 1977), in 32
events from RHESSI (Emslie et al. 2012), in 155 events from
AIA/SDO (Aschwanden & Shimizu 2013), and in 391 events
from AIA/SDO in the present study. Table 3 provides the
ranges of reported physical parameters, but we have to be
aware that different event selections have been used in the
different datasets.

4.2. Isothermal Versus Multi-thermal Energies

The most striking discrepancy appears between the iso-
thermal and multithermal energies, which is measured for the
first time in this study. We overlay the thermal energies Eth as a
function of the flare volume V for the same four studies in
Figure 9. In the present study we calculate both the isothermal
energy Eth,iso (Equation (11)) and the multithermal energy
Eth,multi (Equation (12)) and find a systematic difference of

»E E 14th,multi th,iso (Figures 9, 10). Note the offset of the
linear regression fits between isothermal energies (black line
and diamonds in Figure 9) and multithermal energies (orange
line and diamonds in Figure 9). The multithermal flare energy
definition has to our knowledge not been applied in the
calculation of thermal flare energies in all previous studies, but
is very important, because it boosts the thermal energy
produced in flares statistically by an average factor of »14,
as measured from the energy offset in cumulative size
distributions (Figure 10). This is related to the incompatibility
of iso-thermal temperatures inferred from GOES, AIA, and
RHESSI data, investigated in a recent study (Ryan et al. 2014),
which can only be ameliorated with broadband (multi-
temperature) DEM distributions. The systematic underestimate
of the thermal energy, when the isothermal approximation is
used, may also be the reason why a very low value of E Eth diss
= 0.2–1% (Figure 8(c)) was found for the thermal/magnetic
energy ratio in Emslie et al. (2012), compared with our range
of E Eth diss = 2–40% (Figure 8(a)) calculated in the present
study.

4.3. Flare Volume Measurements

The thermal energy depends on the volume V, and thus the
measurement of flare areas or volumes are crucial to obtain an
accurate energy value. Since we can directly observe in 2D
images the flare area A only, the definition of a flare volume V
is subject to modeling. The simplest definition is the Euclidean
relationship =V A3 2 and =L A1 2, but more complicated
definitions involve the fractal dimension (Aschwanden &
Aschwanden 2008a, 2008b), 3D filling factors (Aschwanden &
Aschwanden 2008b), or other geometric concepts to character-
ize the inhomogeneity of flare plasmas. One prominent
modeling concept is the hydrostatic density scale height
l T( ), which depends on the flare plasma temperature T and
can be used to estimate the vertical height above the solar
surface. The detailed geometry of the flare plasma often
appears to have the geometry of an arcade of loops, which can
be highly inhomogeneous, depending on the spatial inter-
mittency of precipitating electrons along the flare ribbons.
Nevertheless, regardless how complicated the spatial topology
of a flare is, the thermal energy is a volume integral and thus
should be rotation-invariant to the aspect angle or heliographic
location (assuming that we measure correct DEMs along each
line-of-sight). This argument justifies isotropic geometries such
as hemispheric flare volumes (Aschwanden & Shimizu 2013),

Figure 8. Scatterplot of thermal energies Eth vs. magnetically dissipated
energies Ediss: (a) The 172 M- and X-class flares from which the magnetically
dissipated energy was determined in Paper I (Aschwanden et al. 2014) with the
COR-NLFFF method; (b) 12 events with magnetic energies calculated with the
PHOT-NLFFF method; (c) 32 large eruptive flares from Emslie et al. (2012).
The mean ratio qE (solid line) and standard deviations (dashed lines, expressed
by a multiplication factor ×) are indicated, along with the line for equivalence
(dotted line).
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or the related Euclidean relationship »V L3. Moreover, the
height =h L 2 of semi-circular flare loops is about half of the
footpoint separation L, and thus the volume = =V L h L( ) 22 3

can be approximated with a cube »V L3. Hence, we use the
simple Euclidean relationships =V A3 2 and =L A1 2 in this
paper. Detailed geometric 3D modeling of the flare volume at
different temperatures is beyond the scope of this study.

How consistent is the flare volume measurement in the
present work with previous studies? Most flare area measure-
ments are done using a flux threshold, which is chosen above
the data noise level and lower than the maximum flux in an
image, but is arbitrary within this range. The volume of limb
flares from Skylab data (Pallavicini et al. 1977) was calculated
from measuring the height and size of bright soft X-ray
emission in photographs and yields a remarkable good match
for the isothermal energy with our present study (blue line and

crosses in Figure 9). The previous study of 155M- and X-class
flares with AIA/SDO data (Aschwanden & Shimizu 2013)
involved multiple flux threshold levels and was combined from
six different wavelength filters, but is consistent with the area
measurements in this study within a factor of 2. This
uncertainty translates into a factor of »2 33 2 for volumes,
total emission measures, and thermal energies.

4.4. Spatial-synthesized DEM Analysis

DEM analysis is a prerequisite tool for determining thermal
energies. The thermal width of the DEM distribution is the
most crucial parameter to discriminate between isothermal and
multithermal cases. Numerical integrations of the DEM
temperature distribution show that multithermal DEMs yield
in the average 14 times higher (multi-)thermal energies than
isothermal (delta-function-like) DEM distributions (Figure 10).
Thus, the fidelity of the DEM reconstruction is important for
the accurate determination of thermal flare energies.
In this study we employed the spatial synthesis DEM method

(Section 2.3 and Aschwanden et al. 2013), which approximates
the DEM in every (macro-)pixel with a three-parameter
Gaussian DEM function, which is then synthesized for the
entire flare volume by adding all partial DEM distributions
from each pixel. In Figure 2 we demonstrated that this method
converges to a unique DEM solution by iterating from large
macro-pixels to smaller sizes, down to a single image pixel. We
find that this method converges rapidly, when iterating macro-
pixel sizes D = ´ -x X 2 i, = ¼i 0, , 8, on an image with full
size X (Figures 1 and 2). This means that macropixels with a
size of a few pixels isolate hot flare areas and ambient cooler
plasma areas sufficiently to be characterized with a single-
peaked DEM function. The fast convergence to a unique DEM
function is very fortunate and relieves us from more
sophisticated DEM modeling.
We find that the largest uncertainty in DEM modeling comes

from uncertainties of the instrumental response functions,
including missing atomic lines, chemical abundance variations,
and preflare-background subtraction, which all combined are
estimated to be of order ≈10–25% (Testa et al. 2012; Boerner
et al. 2014; M. J. Aschwanden et al. 2015, in preparation),
which is also confirmed from DEM inversions applied to
synthetic data generated with 3D MHD simulations (Testa
et al. 2012).

Table 3
Parameter Ranges of Physical Parameters Determined from Four Different Datasets of Large Flares

Instrument Number Spatial Electron Electron Emission Thermal
of Events Scale Temperature Density Measure Energy

n log(L) Tlog ( )w nlog ( )e log (EM )p Elog ( )th

(Mm) (MK) (cm−3) (cm−3) (erg)

Skylab/S-054a 31 8.7–9.7 6.8–7.1 9.9–11.3 40.1–49.3 28.6–31.0
RHESSIb 32 30.0–31.3
AIA/SDOc 155 8.6–9.8 6.1–7.3 9.6–11.9 47.0–50.6 28.3–32.0
AIA/SDOd 391 8.2–9.7 5.7–7.4 10.3–11.8 47.3–50.3 28.3–31.7
AIA/SDOe 391 8.2–9.7 6.8–7.6 10.3–11.8 47.3–50.3 28.3–32.0

a Pallavicini et al. (1977).
b Emslie et al. (2012).
c Aschwanden & Shimizu (2013).
d This Study: Isothermal Energy.
e This Study: Multithermal Energy.

Figure 9. Comparison of thermal energies as a function of the flare volume size
for four sets of measurements: Pallavicini et al. (1977) (blue crosses),
Aschwanden & Shimizu (2013) (red crosses), isothermal energy in this study
(black diamonds), and multithermal energy in this study (orange diamonds).
Note that the multithermal energies are about an order of magnitude higher than
the isothermal energies.
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4.5. Scaling Law and Extreme Events

In Section 3.5 we derived a physical scaling law for the
thermal energy, = ´ -E T L7.3 10 p pth,RTV

10 3 2 (Equation (24)),
based on the RTV scaling law of 1D hydrostatic loops that are
in steady-state energy balance between heating and cooling
processes. The observational measurements of (multithermal)
energies were found indeed to match this predicted relationship
closely (see correlation between theoretically predicted and
observed thermal energies in Figure 7(e)).

Let us consider the parameters of the most extreme events.
For the largest flare in our dataset, we found a length scale of

= »L 10 50p
9.7 Mm ≈ 0.07 solar radius, the hottest flare has

an (emission measure-weighted) temperature of =Tp

»10 407.6 MK, and the most energetic flare has a multithermal
energy of =E 10th

32.0 erg. The upper limit for thermal energies
is of particular interest for predictions of the most extreme (and
worst events for space weather and astronauts). Based on the
largest flare events observed in history, with a GOES-class of
X10 to X17, an even larger maximum flare energy of

»E 10max
33 erg was estimated, while stellar flares may range

up to »E 10max
36 erg (see Figure 3 in Schrijver et al. 2012).

On the other extreme, the RTV scaling law (Equation (24))
may also be applied to predict the magnitude of the smallest
coronal flare events. An absolute lower limit of flare
temperatures is the temperature of the ambient solar corona,
which is approximately »T 1.0min MK. For a lower limit of the
spatial size of a flare event we can use the size of the smallest
loop that sticks out of the chromosphere, which has a height of

»h 2chrom Mm and a semi-circular loop length of
= »L πh 6min chrom Mm. The apex segment that sticks out of

the chromosphere can have a projected length scale as short
as L 1min Mm. The extrapolated thermal energy of the
smallest flare is then estimated to be =Eth

´ » ´- T L7.3 10 7 1010
min
3

min
2 24 erg, which is about nine

orders of magnitude smaller than the largest flare, and thus
called a nanoflare. This is consistent with the smallest observed

nanoflares, which have been found to have a thermal energy of
» -E 10 10th

24 26 erg (Aschwanden et al. 2000; Krucker &
Benz 2000; Parnell & Jupp 2000; Aschwanden & Par-
nell 2002). Note that these predictions are based on our
calculations of the multithermal energy, which amounts to an
average correction factor of 14.

4.6. Self-organized Criticality Models

The statistics of nonlinear dissipative events often follows a
scale-free powerlaw distribution, in contrast to (linear) random
processes (such as photon statistics of a steady source), which
follow a Poisson distribution (or its exponential approxima-
tion). The powerlaw function in occurrence frequency
distributions (or size distributions) has been declared as a
hallmark of nonlinear systems governed by SOC (Bak
et al. 1987). A quantitative derivation of the powerlaw
distribution function of SOC processes has been derived in
the framework of the fractal-diffusive SOC model (FD-SOC:
Aschwanden 2012; Aschwanden et al. 2014b), which predicts
universal values for the powerlaw slopes of spatio-temporal
parameters, based on the scale-free probability conjecture,

µ -N L L( ) d, the fractal geometry of nonlinear dissipative
avalanches, and diffusive transport of the avalanche evolution.
We measured the size distributions of spatio-temporal physical
parameters in solar flares (length L, area A, volume V, durations
D) and found indeed agreement with the predictions of the
standard FD-SOC model (Figure 6). The size distributions of
the other physical parameters (Tp, np, EMp, Eth), however, are
not universal, but depend on the underlying physical process of
the SOC phenomenon. For solar flares in particular, we found
that the RTV scaling law is consistent with the observed
parameter correlations and size distributions. Most of the
physical scaling laws are expressed in terms of powerlaw
exponents (such as the thermal energy, i.e., µE T Lp pth

3 2),
which has the consequence that all size distributions of physical
parameters are also predicted to have a powerlaw shape, except
for finite-size effects (that produce a steep drop-off at the upper
end) and incomplete sampling due to limited sensitivity (which
produces a turnover at the lower end), as manifested in the size
distributions shown in Figure 6. What the observed size
distributions show, is the scale-free parameter range (also
called inertial range) of SOC processes over which an identical
physical process governs nonlinear energy dissipation. The size
distributions shown in Figure 6 exhibit no indication of
multiple or broken powerlaws in the inertial range of M- and
X-class flares. Note that such powerlaw distributions occur
only for statistically complete samples (above some threshold
value). Datasets with “hand-selected” events (such as the 37
eruptive flare events sampled in Emslie et al. 2012) do not
exhibit powerlaw-like size distributions.
Various flare energy size distributions have been compared

in previous studies (e.g., see composite size distribution in
Figure 10 of Aschwanden et al. 2000, based on size
distributions published by Crosby et al. 1993; Shimizu 1997;
Aschwanden et al. 2000; Krucker & Benz 2000; and Parnell &
Jupp 2000). Such composite size distributions have been used
to characterize the overall size distributions from the smallest
nanoflare to the largest X-class flare. However, the construction
of a synthesized flare energy size distribution requires a
consistent definition of energy, which is not the case in most of
the published studies, since they contain thermal as well as
nonthermal energies. In order to illustrate this discrepancy we

Figure 10. Cumulative occurrence frequency distributions of isothermal,
multithermal, and dissipated magnetic energies in 171 M- and X-class flares.
Note that the energy values have a characteristic ratio of »E E 14th,multi th,iso

and »E E 12.9magn th,multi .
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show the cumulative size distributions of isothermal, multi-
thermal, and magnetic flare energies in Figure 10, where we
sample an identical event list, which is the common subset of
the three energy forms and contains 171 events. In Figure 10
we show a cumulative size distribution of these events,
constructed with the inverse rank-order plot. Note that the
three different forms of energy differ by an approximate
amount of »E E( ) 13magn th,multi and »E E( ) 14th,multi th,iso . It
is therefore imperative to derive the same form of energy when
comparing the occurrence probabilities from the size distribu-
tions of different datasets.

4.7. Thermal/Magnetic Energy Ratios

One key result of this study is the thermal/magnetic energy
ratio, for which we found a range of » -E E 2 40%th diss . We
consider this result to be a substantial improvement over
previous estimates, where isothermal instead of multithermal
temperature distributions were used and no measurements of
magnetically dissipated energies were available, resulting into a
much lower estimate of the thermal energy content in the order
of » -E E 0.2 1%th diss (Emslie et al. 2012). The thermal
energy is smaller than the magnetically dissipated energy for
essentially all events (Figure 8(a)), while the few mavericks
can be explained by inaccurate energy measurements, either on
the thermal or magnetic part. This result is certainly consistent
with most magnetic reconnection models (where magnetic
energy is converted into acceleration of particles) and the thick-
target model (where the accelerated particles lose their energy
by precipitation down to the chromosphere and heat up the
chromospheric plasma). The amount of energy that goes into
chromospheric and coronal plasma heating may well be larger
than the thermal energy measured here, because we measured
only the thermal energy content at the peak time of the flare,
while multiple heating phases may occur before and after the
flare peak. Even if we would add up all thermal energies from
every flare episode that shows a subpeak in the soft or hard
X-ray time profile, we would still underestimate the thermal
energy because (radiative and conductive) cooling processes
are not considered in the calculation of the thermal energy
content here. Thus, the multithermal energy content calculated
here represents only a lower limit of the heating energy that
goes into flare plasma heating during a flare. A complete
calculation of the multithermal flare energy would require a
forward-fitting method of the evolution of the heating rate
dE dth that fits the observed conductive dE dtcond and radiative
energy loss rate dE dtrad , which is beyond the scope of this
study, since this would require realistic geometric 3D models
of flare loop arcades also.

5. CONCLUSIONS

As part of a global flare energetics study that encompasses
all forms of energies that are converted during solar flares (with
or without coronal mass ejections (CMEs)) we calculated the
dissipated magnetic energy of 172 GOES M- and X-class
events (in Paper I), and the multithermal energy at the peak
time of 391 flare events (in this Paper II). The catalog of these
flare events is available online, see http://www.lmsal.com/
~aschwand/RHESSI/ flare_energetics.html. The major results
of this study are:

1. We computed the DEM distribution function of all 391
flares in time steps of D =t 0.1hr using the spatially-

synthesized Gaussian DEM forward-fitting method,
which yields a detailed shape of the multithermal DEM
distribution. This method is found to be robust and
converges as a function of the macro-pixel size to a
unique DEM solution, subject to uncertainties in terms of
the instrumental response function and subtracted back-
ground fluxes in the order of ≈10%. The multithermal
DEM function yields a significantly higher (typically by a
factor of ≈14, but comprehensive, (multi-)thermal
energy than the isothermal energy estimated from the
same data.

2. For the overlapping dataset of 171 flare events for which
we could calculate both the magnetically dissipated
energies Ediss and the multithermal energies Eth, we find
a ratio of E Eth diss ≈ 2–40%. This value is about an order
of magnitude higher than previous estimates, i.e.,
E Eth diss ≈ 0.2–1.0%, where isothermal energies from
GOES X-ray data rather than multithermal energies from
EUV AIA data were calculated, and a ratio of

=E E 30%pdiss was assumed ad hoc (Emslie et al. 2012).
3. The computed thermal energies are consistent with the

RTV scaling law = ´ -E T L7.3 10 p pth,RTV
10 3 2, which

applies to the energy balance between the heating and
(conductive and radiative) cooling rate at the turning
point of the flare peak time. In our analyzed dataset of M-
and X-class flares we find thermal energies in the range of

=E 10th
28.3–1032.0 erg. In comparison, the largest histor-

ical flare event has been reported to have an energy of
»E 10th

33 erg, while the smallest coronal nanoflares with
a length scale of L 1min Mm and coronal temperature
of T 1e MK are predicted to have values of E 10th

24

erg according to the RTV scaling law.
4. The size distributions of the spatial parameters display a

powerlaw tail with powerlaw slopes of a = 3.3 0.3L
obs

for the length scales, a = 1.7 0.2V
obs for flare volumes,

a = 1.8 0.2E
obs for flare volumes, and are consistent

with the predictions of the FD-SOC model combined
with the RTV scaling law (a = 3.0L ; a = 1.67V ;
a = 1.88E ).

After we have established the measurements of magnetically
dissipated flare energies (Paper I) and the multithermal
energies (this paper), we plan to measure the non-thermal
energies (using RHESSI), the kinetic energies of CMEs (using
AIA/SDO and STEREO), and the various radiative energies in
gamma-rays, hard X-rays, soft X-rays, EUV, and bolometric
luminosity in future studies. The ultimate goal is to quantify
and understand the energy partition in a comprehensive set of
large flare/CME events, and to identify the physical processes
that are consistent with the various flare energy measurements.

We appreciate helpful and constructive comments from an
anonymous referee and from a number of participants of the
RHESSI-13 workshop. Part of the work was supported by
NASA contract NNG 04EA00C of the SDO/AIA instrument
and the NASA STEREO mission under NRL contract N00173-
02-C-2035.

APPENDIX
THERMAL ENERGY OF A MULTITHERMAL DEM

Thermal energies of solar flares are generally estimated by
the expression for a homogeneous and isothermal plasma
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(Equation (11)),

= =E n k T V k T V3 3 EM , (A1)p B p B p pth

where =n VEMp p is the electron density, Tp the electron
temperature, and V the volume, measured at the peak time tp of
a flare. The values EMp and Tp are generally determined from
the peak in a DEM distribution function.

However, since the solar flare plasma is inhomogeneous and
multithermal, we can calculate a more accurate expression for
the total thermal energy when imaging observations are
available. Ideally, such as in the case of an MHD simulation,
the full 3D distributions of temperatures T x y z( , , )e and electron
densities n x y z( , , )e are known, so that the most accurate
expression for thermal energies can be computed by volume
integration (e.g., Testa et al. 2012),

ò ò ò=E n x y z k T x y z dx dy dz3 ( , , ) ( , , ) . (A2)e B eth

For numerical computations, we use a discretized 3D volume
x y z( , , )i j k that is aligned in the z-direction with the line-of-sight,
while images in different wavelengths have the 2D coordinate
system x y( , )i i with pixel size D = Dx y. A DEM analysis yields
an inversion of a DEM distribution =T T x yDEM ( ) DEM( ; , )ij i j

in every pixel at location x y( , ).i j The column depth emission
measure is defined by

ò ò= = =T dT n dz n LEM DEM ( ) (A3)ij ij ij ij
2 2

which yields an average density nij along the line-of-sight
column depth with length L at each pixel position x y( , )i j . We
can then define a thermal energy E ijth, for each column depth

=L V1 3 by summing all contributions EMk from each
temperature interval DTk (Equation (11)),
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The total thermal energy in the computation box can then be
obtained by summing up the partial thermal energies EMij from
all pixels,
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where we replaced the partial DEM functions TDEM ( )ij k per
column depths by the total DEM function TDEM( )k ,

åå= D( ) ( )T T xDEM DEM , (A6)k
i j

ij k
2

which leads to the expression given in Equation (12).

We compare now the thermal energy Eth (Equation (A5))
computed in this way for a multithermal DEM distribution with
the isothermal approximation (Equation (A1)) by their ratio in
Figure A1 , given for a set of thermal widths =w 0.1T , 0.2, K,
1.0 in the single-Gaussian DEM function (Equation (1)) that is
used for DEM modeling in each pixel. For small values, say
wT = 0.1, the DEM distributions are almost isothermal, and
thus the approximation (Equation (A1)) is appropriate and we
obtain a ratio near unity = q E E( ) 1iso iso multi ). For broader
multithermal DEM functions, the ratio increases systematically,
up to a factor of q 30iso . At higher temperatures, the ratio
decreases because the temperature range between the peak of
the DEM and the upper limit (here at T = 30MK) becomes
increasingly smaller and thus has less weight in the asymmetric
T-weighting of the thermal energy contributions. Observed
DEM peaks have typically a logarithmic temperature half width
of »w 0.5T (see Figure 4 for examples), and thus the
multithermal energy ratios vary by a factor of » -q 2 8iso
for flare peak temperatures in the range of » -T 1 10p MK
(Figure A1). Since the observed DEM distributions are
generally multi-peaked, the ratios tend to be higher than
estimated from single-Gaussian DEMs as shown in
Figure (A1).
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