Active-region Loops

Working group report

Markus J. Aschwanden Sofiane Bourouaine George Doschek Mike Marsh Helen Mason Richard Nightingale Hardi Peter Aveek Sarkar Ignacio Ugarte-Urra Peter Young Pia Zacharias + misc people

Spatial structure

- How to define a loop?
 - \rightarrow Should we ignore the background?
- Are the thinnest loops seen in TRACE resolved?
- Monolithic or multi-stranded loops / single vs multi-temperatures
 - \rightarrow can models explain these narrow DEM? can a nanoflare-model do it?
 - \rightarrow is heating in AR loops predominantly at footpoints?
 - \rightarrow is heating asymmetric? (stronger in plage than above AR)
- Expansion of the loops (or strands)?
 →is this required by models, can we constrain this by observations?
- Hierarchy of loops
 - \rightarrow small hot dense loops at center of AR
 - \rightarrow cooler larger loops further out
 - \rightarrow fan-like structures (loops?) at periphery
 - \rightarrow dark areas surrounding AR (solar wind?)
- reconstructing 3D density & temperature structure (from STEREO)

Outflow of the solar wind from the AR periphery

Active Region 11 Dec. 2007 Fe XII 195.12 Å 00:24:16 UT -178", -144" 60s exposures FOV: 256"x256"

SOT magnetogram

from Doschek et al. 2008, ApJ, 686, 1362

3D coronal rendering using STEREO

Modeling

- forward model: include synthesis of observables
 - \rightarrow line profiles
 - \rightarrow broadband filtergrams

what about non-equilibrium ionization ?

- location of the heating:
 → footpoint-dominated → is this settled now?
- intermittency of heating:
 - \rightarrow impulsive \rightarrow one (or few) events over (cooling) time scale
 - \rightarrow quasi-static \rightarrow many smaller events / quasi-continuos

 \rightarrow waves

 $\rightarrow \dots$

- connection to chromospheric modeling
 - \rightarrow corona/AR loops \rightarrow large scale (up to 200 Mm)
 - \rightarrow chromosphere: \rightarrow high resolution preventing large FOV
- publicly available data cubes from complex numerical models

(New) Observations (existing instruments)

- can we rule out straylight (20%) \rightarrow how does this influence results
- background effects from EUV observations
- combine observations sequences for dynamics and flows with EIS:
 - \rightarrow small rapid scans of parts of ARs or undersampling
 - \rightarrow about 5 minutes time cadence
- increase multi-instrument usage: XRT, EIS, TRACE
 - \rightarrow important to get temporal evolution of heating-cooling process
 - \rightarrow STEREO data to get 3D reconstructions
- make better use of SOT
- temporal resolution of AIA/SDO will greatly help for loop evolution

Future

- what kind of temporal, spatial and spectral resolution do we really need?
- how do we measure coronal magnetic fields?
 → EUV spectro-polarimeter (in addition to coronagraphic instruments)
- imaging spectroscopy of AR field-of-view within cooling time
 - \rightarrow 200" x 200" maps with spectral resolution within <5 minutes
 - \rightarrow spatial resolution 0.1"
 - \rightarrow cover lines from 1e^4 to 10^7 K
 - → remember: this should be complimentary to the chromosphere/TR observations which need higher temporal and spatial resolution (at a smaller field-of-view)

