

# The Formation of Filament Threads in a Sheared Magnetic Field

Lawrence Sparks

Jet Propulsion Laboratory

Solar Activity During the Onset of Solar Cycle 24
Napa, California
December 10, 2008

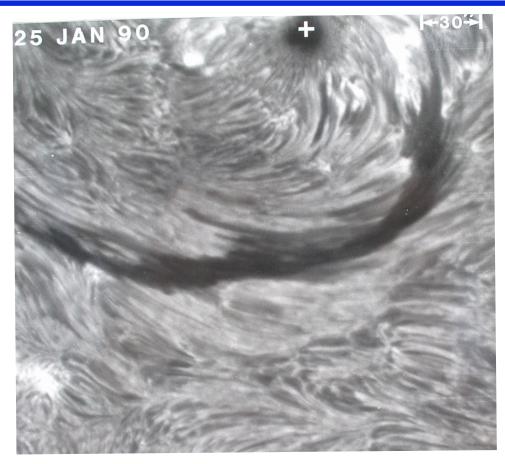
### **Outline**



- Why am I here?
- Thermal instability
- Condensation in a sheared magnetic field
- Linear analysis
- Nonlinear simulation

### **Observations**



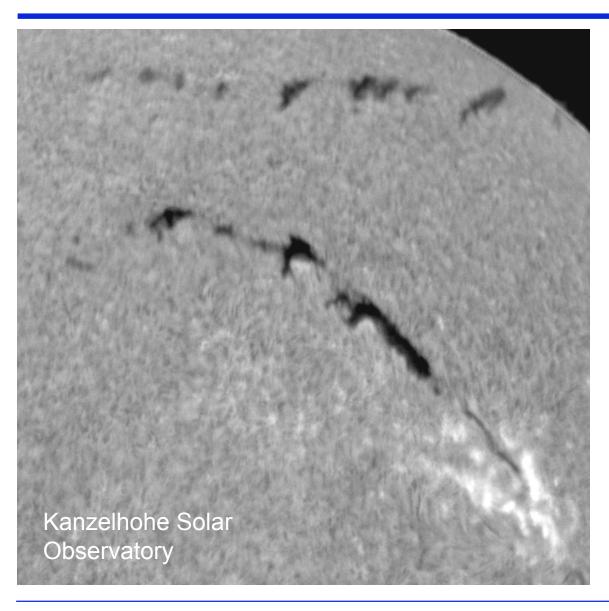


shown by Sara Martin at JPL Space Plasma Physics Journal Club, 8/22/2008

Filaments are observed to separate regions of opposite, line-of-site magnetic polarity in the photosphere.

### **Spectrum of filaments**





Quiescent polar crown filament

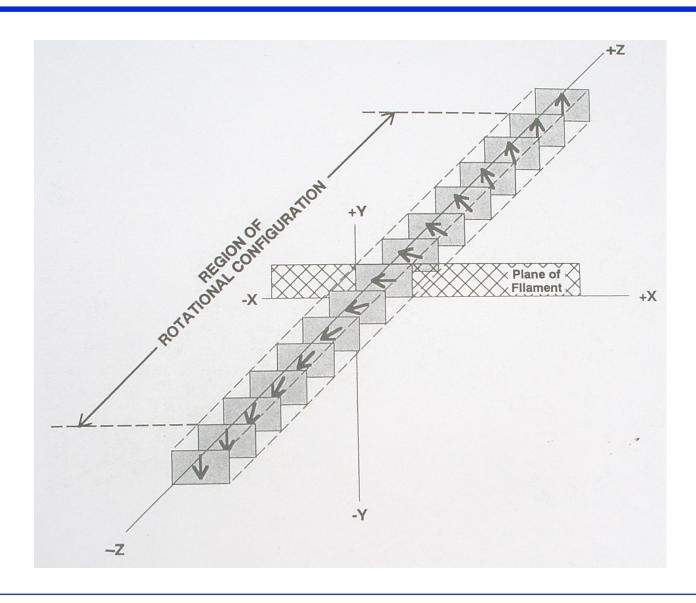
Quiescent filament

Intermediate filament

Active region filament

# Magnetic field configuration for filaments (from Sara Martin)





# References on thermal instability in a sheared magnetic field



- L. Sparks and G. Van Hoven, "Thermal Instability of a Radiative and Resistive Coronal Plasma", **Astrophys. J.** 333, 953 (1988).
- L. Sparks, G. Van Hoven and D. D. Schnack, "The Nonlinear Evolution of Magnetized Solar Filaments", **Astrophys. J. 353**, 297 (1990).

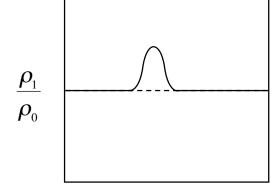
### Thermal stability



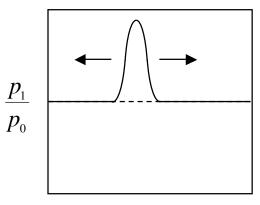
density

temperature

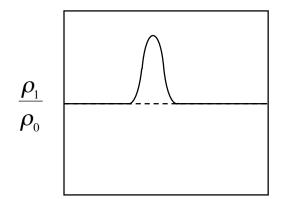
pressure

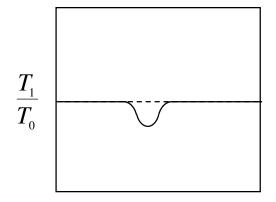


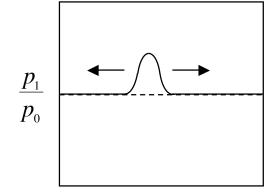
 $rac{T_1}{T_0}$ 



Adiabatic compression: perturbed pressure provides a restoring force







Thermal equilibrium with radiation:

H + C = 0

 $H = H(\rho)$ 

 $C = R\rho^2 T^r$ 

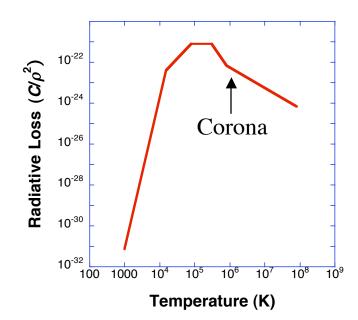
Radiative compression: here adiabatic and non-adiabatic heating dominates

### Thermal instability under coronal conditions

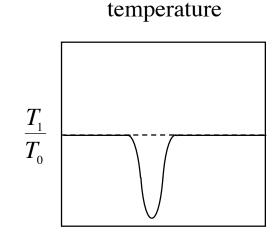


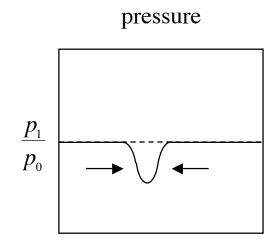
Temperature drop causes enhanced radiative losses.

Condensation augments radiative losses.



 $rac{
ho_{_{1}}}{
ho_{_{0}}}$ 





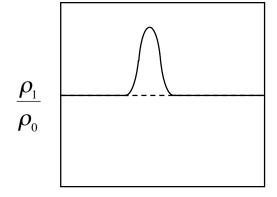
### **Thermal conduction**



density

temperature

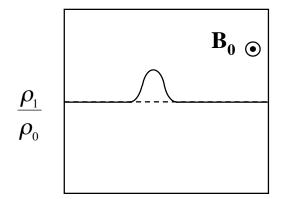
pressure



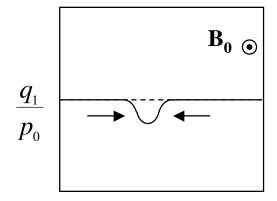
1 ---

 $\frac{p_1}{p_0}$ 

Compression with thermal conduction: heat flow stabilizes perturbation



 $rac{T_1}{T_0}$ 



Compression with magnetic field: field provides thermal insulation in transverse direction Magnetic pressure opposes density enhancement

### Filament thread formation by condensational instability?



Condensational instability cannot form filament threads in a *uniform* magnetic field:

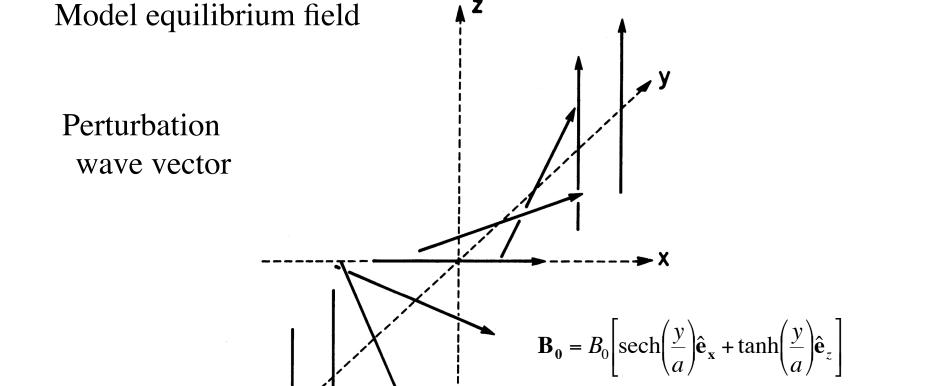
- (1) the magnetic field prevents transverse mass flow from contributing to a local growth in density;
- (2) heat flow parallel to the field ensures that parallel mass flow will not contribute to a condensational instability.

#### **Key question:**

How is it possible for a magnetic field to inhibit heat flow in a coronal plasma without simultaneously restricting the mass flow required for the growth of filament threads?

### Condensations in a sheared magnetic field



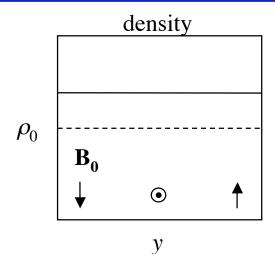


Magnetic field is force-free. *a* is the shear scale.

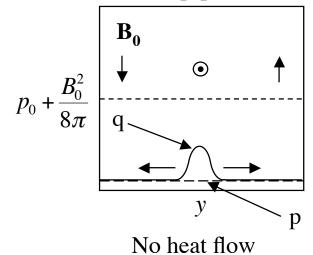
 $\mathbf{B_0}$  rotates 50° over [0, a].

### Localization of density in the shear layer

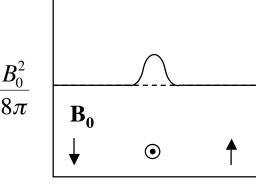




kinetic (p) and total (q) pressure

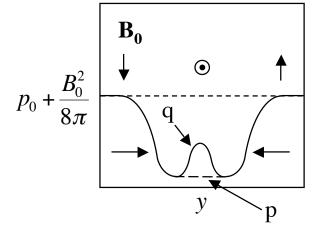


magnetic pressure



kinetic (p) and total (q) pressure

y



Parallel heat flow

Parallel heat flow forces perturbation to vanish at boundary.

Total pressure gradient pushes plasma into the shear layer.

### **Model equations**



$$\frac{\partial \rho}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \rho + \rho \boldsymbol{\nabla} \cdot \boldsymbol{u} = 0 ,$$

$$\rho \left( \frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) + \nabla p - \frac{1}{c} \boldsymbol{J} \times \boldsymbol{B} = 0 ,$$

Maxwell's eqs. 
$$\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} + \nabla \times \mathbf{E} = 0$$
,  $\nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{J}$ ,

$$\nabla \cdot \boldsymbol{B} = 0$$
,  $\boldsymbol{E} + \frac{1}{c} \boldsymbol{u} \times \boldsymbol{B} = \eta \boldsymbol{J}$ ,

Assume classical (small) resistivity. Note: no gravity.

### **Energetics**



Ideal gas law

$$p = 2\rho k_{\rm B} T/m_i$$

Energy eq.

$$\frac{\partial p}{\partial t} + \boldsymbol{u} \cdot \nabla p = \frac{\gamma p}{\rho} \left( \frac{\partial \rho}{\partial t} + \boldsymbol{u} \cdot \nabla \rho \right) + (\gamma - 1)(\eta J^2 + H - C + \nabla \cdot \boldsymbol{\kappa} \cdot \nabla T)$$

Heating function *H* is assumed constant in time.

Classical thermal conductivity tensor  $\kappa$  has  $\kappa_{\perp} << \kappa_{\parallel}$ .

### **Characteristic time scales**

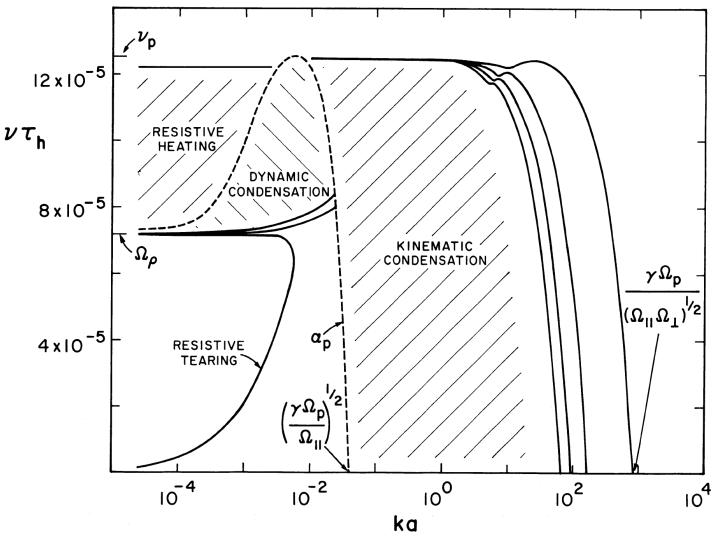


TABLE 1
CHARACTERISTIC CORONAL FREQUENCIES

| Frequency                                           | Definition                                                                                                          | Value $(\Omega \tau_h)$                |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| $\Omega_ ho$                                        | $-(\gamma-1)\left(\frac{T_0}{p_0}\right)\left(\frac{\partial C}{\partial T}\Big _{\rho}\right)$                     | $7.32 \times 10^{-5}$                  |
| $\Omega_T$                                          | $(\gamma - 1) \left( \frac{\rho_0}{p_0} \right) \left( \frac{\partial C}{\partial \rho} \Big _{T} \right)_0$        | $1.46 \times 10^{-4}$                  |
| $\Omega_p \ldots \ldots$                            | $(\gamma - 1) \left( \frac{\rho_0}{\gamma p_0} \right) \left( \frac{\partial C}{\partial \rho} \Big _{p} \right)_0$ | $1.32 \times 10^{-4}$                  |
| $\Omega_\parallel$                                  | $(\gamma - 1) \left( \frac{\kappa_{\parallel} T_0}{p_0 a^2} \right)$                                                | $1.45 \times 10^{-1}$                  |
| $\Omega_{\perp}$                                    | $(\gamma-1)\left(\frac{\kappa_{\perp} T_0}{p_0 a^2}\right)$                                                         | $4.83 \times 10^{-13}$                 |
| $\Omega_r$                                          | $\frac{\eta_0 c^2}{4\pi a^2}$                                                                                       | $9.57 \times 10^{-12}$                 |
| $\Omega_J$                                          | $-(\gamma - 1) \frac{d \ln \eta_0}{d \ln T_0} \frac{\eta_0 J_0^2}{p_0}$                                             | $\frac{(0)}{}$ 1.91 × 10 <sup>-9</sup> |
| $n_0 = \rho_0/n$                                    | $m_i = 10^{10} \text{ cm}^{-3},$                                                                                    | $T_0=10^6~K,$                          |
| a = 100  km,<br>$\tau_h = a\sqrt{4\pi\rho_0/B_0^2}$ |                                                                                                                     | $B_0 = 83.3 \text{ G}$                 |
| $\tau_h = a\sqrt{4}$                                | $\pi ho_0$ / $B_0^2$                                                                                                |                                        |

# Linear modes for thermal instability in a sheared magnetic field





Growth rate vs. wavenumber

### **Dynamic condensations**

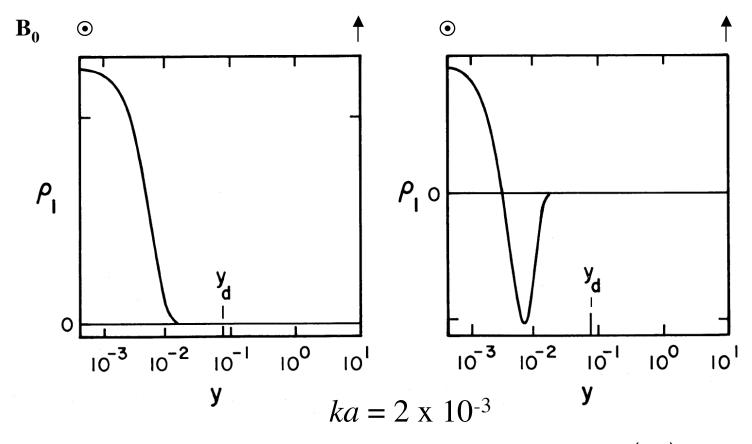


### Characteristics of *dynamic* condensations:

- spatial scale is determined primarily by force balance
- plasma mass flow is directed perpendicular to the magnetic field
- less compressible, the magnetic field inhibits (transverse) plasma compression
- only a drop in temperature contributes to growth
- the growth rate increases with the number of nodes in mode
- analog of classical resistive tearing mode is a special case

### Density perturbations for principal dynamic condensation mode and 1st harmonic





Characteristic spatial scale  $y_d$  defined by:  $y << y_d => \text{ flow is perpendicular to } \mathbf{B_0}.$  $y >> y_d => \text{ flow is parallel to } \mathbf{B_0}.$ 

$$\frac{B_{0z}(y_d)kv_A}{B_0} = \Omega_A$$

#### **Kinematic condensations**



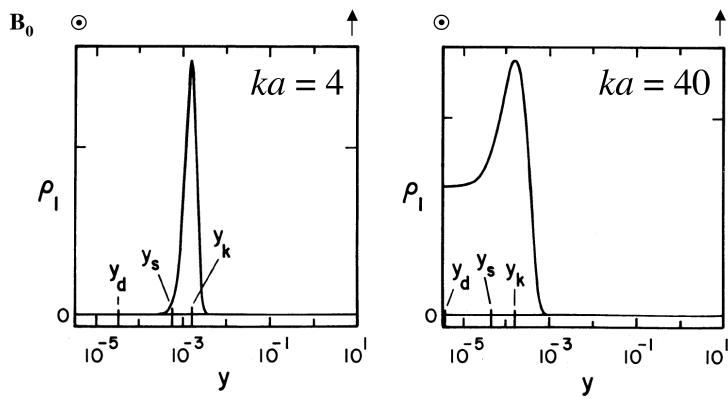
kinematic - "of or relating to aspects of motion apart from considerations of mass and force"

Characteristics of *kinematic* condensations -

- spatial scale is determined primarily by energy balance
- exist only in the presence of anisotropic heat flow
- plasma mass flow is directed parallel to the magnetic field
- highly compressible; most compressible when sound waves traveling parallel to the magnetic field can maintain pressure balance
- both a drop in temperature and mass flow parallel to field lines contribute to growth
- exhibit higher growth rates than dynamic modes
- growth rate decreases with number of nodes in mode

### **Density perturbations for** principal kinematic condensation mode





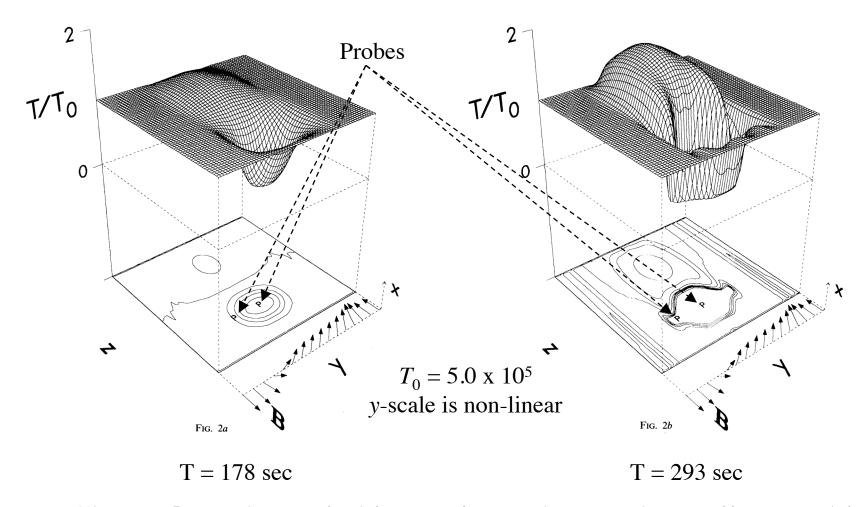
Characteristic spatial scales  $y_s$ ,  $y_k$ .

 $y > y_s =$ sound waves parallel to  $\mathbf{B_0}$  can maintain pressure balance

y > y<sub>s</sub> => sound waves parallel to 
$$\mathbf{B_0}$$
 can maintain pressure balance  $y >> y_k$ , thermal conduction dominates radiation 
$$\frac{B_{0z}^2(y_s)k^2\gamma p_0}{B_0^2\rho_0} = v^2$$
$$\frac{y >> y_k, \text{ thermal conduction dominates}}{B_0^2} \frac{k^2B_{0z}^2(y_k)}{B_0^2} = \frac{\gamma p_0(\Omega_p - v) - v^2\rho_0 a^2\Omega_{\parallel}}{2p_0 a^2\Omega_{\parallel}}$$

# Temperature evolution for generic perturbation

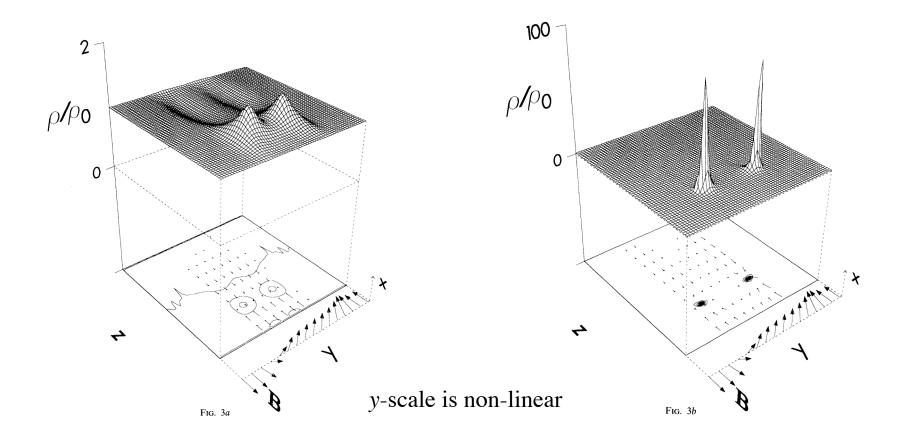




Choose k so that only kinematic modes are thermally unstable.

# **Density evolution for generic perturbation**





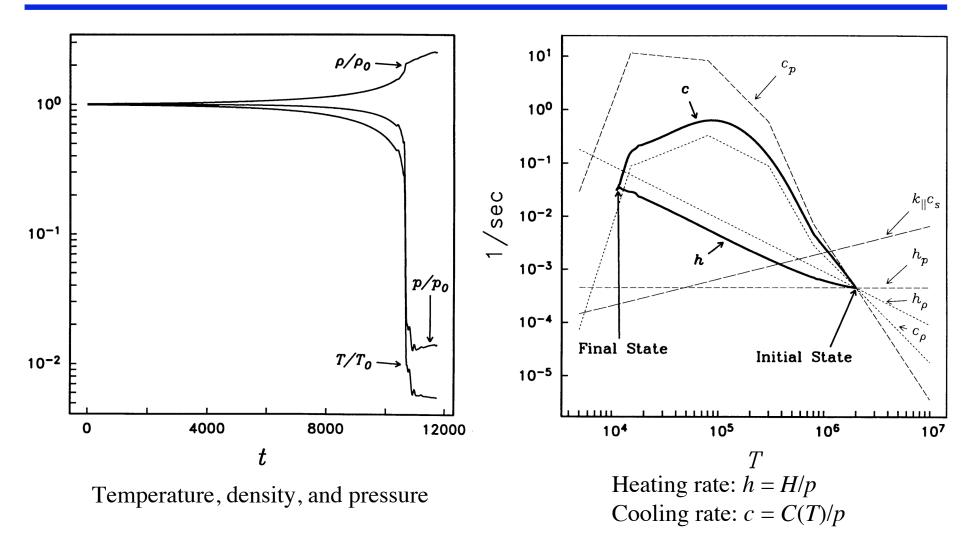
$$T = 178 \text{ sec}$$

$$T = 293 \text{ sec}$$

Density at peaks increases by nearly two orders of magnitude.

# Time evolution at probe for generic perturbation

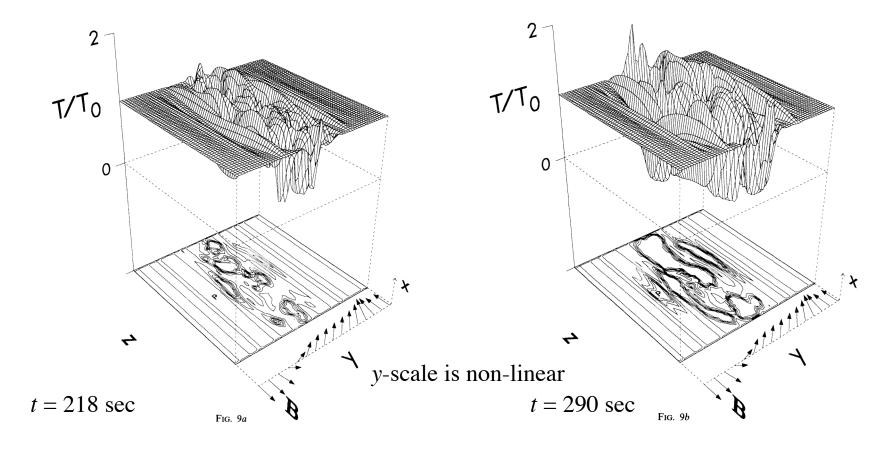




Similar results but slower to develop - a much longer computation.

# Temperature evolution for random perturbation with $T_0 < T_{\rm c}$

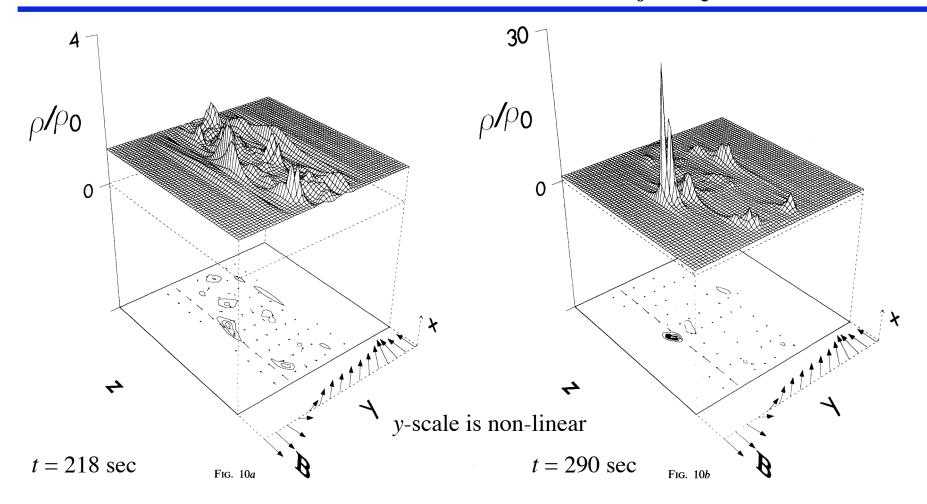




Initial temperature is  $T_0 = 5 \times 10^5 \text{ K}$ Final temperature in condensation is  $\sim T_0 / 100$ .

# Density evolution for random perturbation with $T_{\rm o} < T_{\rm c}$





Final peak density is  $\sim 100\rho_0$ .

### **Summary for linear analysis**



- A condensation will form preferentially in regions near where  $\mathbf{k}$  is perpendicular to  $\mathbf{B_0}$ .
- Dynamic condensations:
  - spatial structure is determined primarily by force balance;
  - have plasma mass flow perpendicular to the magnetic field;
  - growth due primarily to temperature drop.
- *Kinematic* condensations:
  - exist only in the presence of anisotropic heat flow;
  - have plasma mass flow parallel to the magnetic field;
  - are most compressible when sound waves traveling parallel to the magnetic field can maintain pressure balance;
  - both a drop in temperature and mass flow parallel to field lines contribute to growth;
  - exhibit the fastest growth.

### **Summary for non-linear simulations**



Nonlinear two-dimensional MHD simulations have traced the local genesis and growth of plasma filament threads in a force-free, sheared magnetic field until they attain both a minimum temperature and a maximum mass density characteristic of observed solar filaments.

A locally sheared magnetic field can thermally insulate regions of a coronal plasma without simultaneously impeding the mass flow required for the growth of condensations.

### **Linearized equations of motion**



$$\frac{1}{\rho_0} \frac{\partial \rho_1}{\partial t} + \nabla \cdot \boldsymbol{u} = 0 ,$$

$$\rho_0 \frac{\partial \boldsymbol{u}}{\partial t} + \nabla p_1 + \boldsymbol{B}_0 \times (\nabla \times \boldsymbol{B}_1)/4\pi$$

$$+ \boldsymbol{B}_1 \times (\nabla \times \boldsymbol{B}_0)/4\pi = 0$$

$$\frac{1}{T_0} \frac{\partial T_1}{\partial t} + (\gamma - 1)\nabla \cdot \boldsymbol{u} + \frac{(\gamma - 1)}{p_0} \left(\frac{\partial C}{\partial \rho} \rho_1 + \frac{\partial C}{\partial T} T_1\right)$$

$$- \frac{(\gamma - 1)\eta_0 c^2}{8\pi^2 p_0} (\nabla \times \boldsymbol{B}_0) \cdot (\nabla \times \boldsymbol{B}_1)$$

$$- \frac{(\gamma - 1)\eta_1 c^2}{16\pi^2 p_0} |\nabla \times \boldsymbol{B}|^2 - \frac{(\gamma - 1)}{p_0} \nabla \cdot \boldsymbol{\kappa}_0 \cdot \nabla T_1 = 0$$

$$\frac{\partial \boldsymbol{B}_1}{\partial t} + \frac{c^2}{4\pi} \nabla \eta_1 \times (\nabla \times \boldsymbol{B}_0)$$

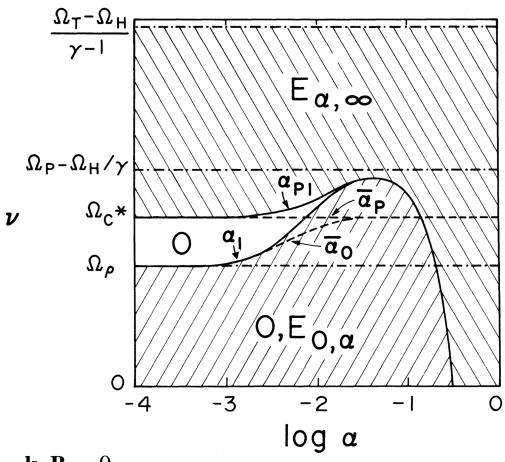
$$+ \frac{c^2 \eta_0}{4\pi} \nabla \times (\nabla \times \boldsymbol{B}_1) - \nabla \times \boldsymbol{u} \times \boldsymbol{B}_0 = 0$$

$$\nabla \cdot \boldsymbol{B}_1 = 0 ,$$

$$\frac{p_1}{p_0} = \frac{\rho_1}{\rho_0} + \frac{T_1}{T_0} .$$

### Linear modes in a uniform magnetic field





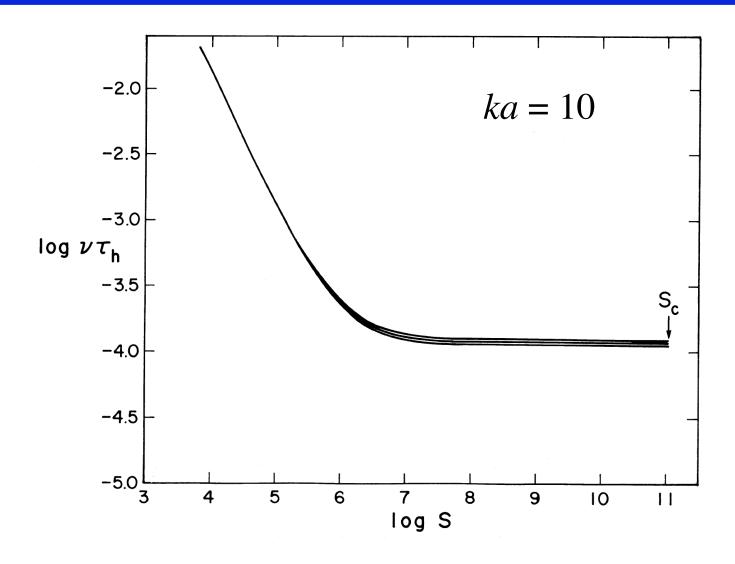
$$\mathbf{k} \cdot \mathbf{B}_0 = 0$$

Solutions of the form:

$$q(y) = (A e^{+sy} + Be^{-sy}) e^{ikx}$$

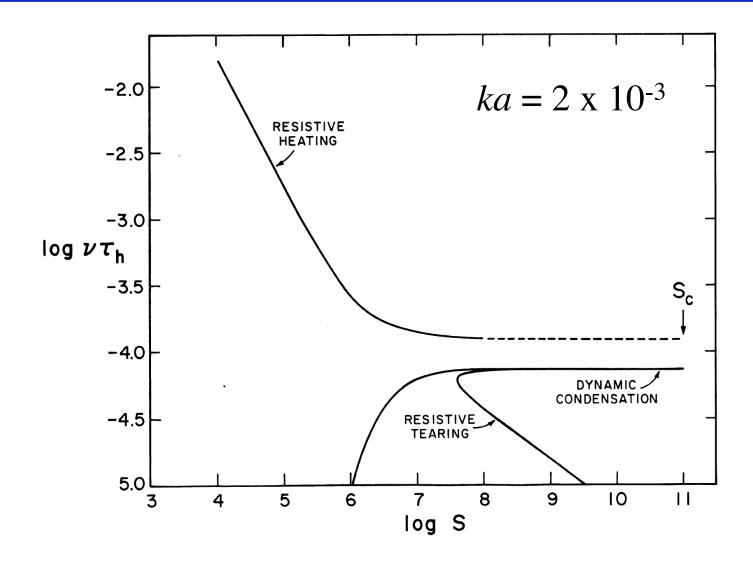
### Growth rate vs. Lundquist number for kinematic condensation modes





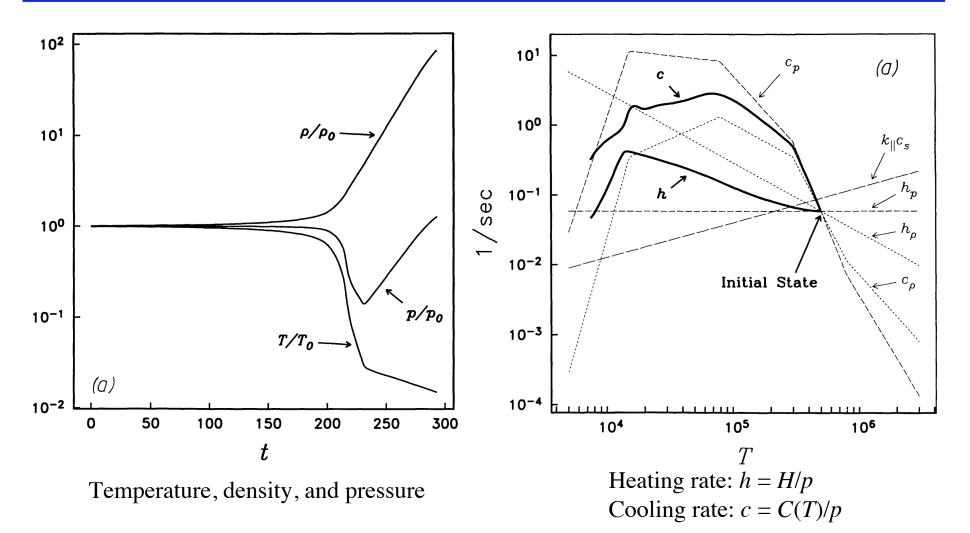
# Growth rate vs. S for dynamic condensation, resistive heating mode and resistive tearing mode





# Time evolution at outer probe for generic perturbation with $T_0 < T_c$

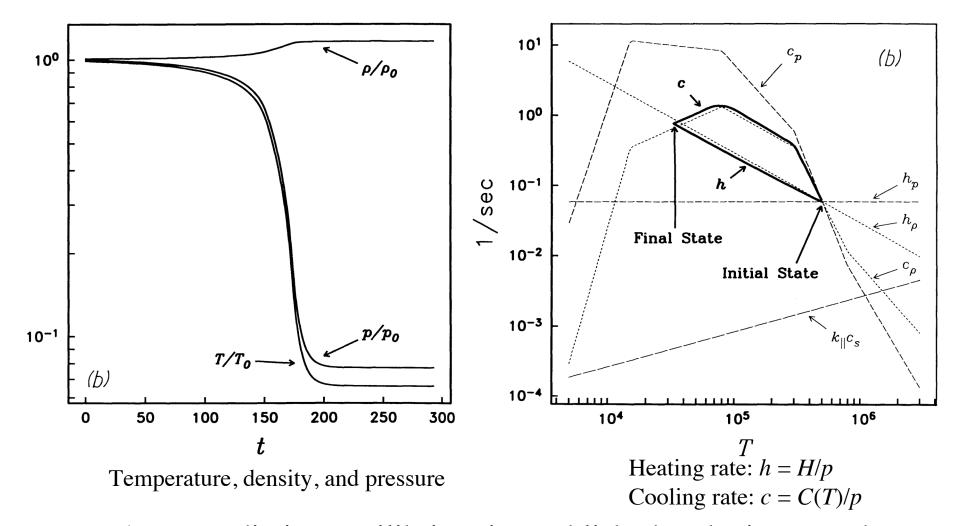




Simulation is run until gradients can no longer be resolved.

# Time evolution at inner probe for generic perturbation with $T_0 < T_c$





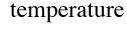
A new radiative equilibrium is established at the inner probe.

### Necessary conditions for thermal instability

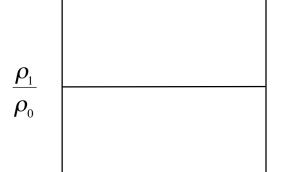


(Field, Ap. J. 142, 531, 1965)

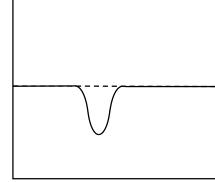
density



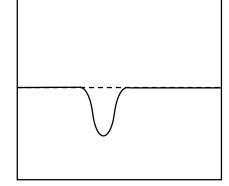
pressure



 $\frac{T_1}{T_0}$ 

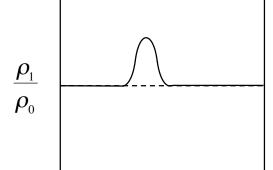


 $\frac{p_{_1}}{p_{_0}}$ 

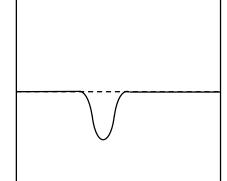


Isochoric perturbation:

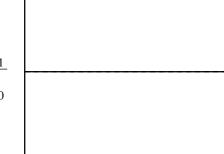
$$\left. \frac{\partial C}{\partial T} \right|_{\rho} < 0$$



 $\frac{T_1}{T_0}$ 



 $\frac{p_{_1}}{p_{_0}}$ 



Isobaric perturbation:

$$\left| \frac{\partial C}{\partial T} \right|_{\rho} - \frac{\rho_0}{T_0} \left( \frac{dH}{d\rho} + \frac{\partial C}{\partial \rho} \right|_{T} \right) < 0$$