Quiescent prominence investigations in the EUV-UV ranges

S. Parenti, SIDC-Royal Observatory of Belgium, Be

<u>Outline</u>

The prominence and QS spectral atlas Physical parameters ✓ Non-thermal velocity ✓ Differential Emission Measure Energy budget Plasma T from H-Lyman continuum Application to modeling Other hot topics on EUV quiet prominences ✓ Conclusions

The spectral atlas

The atlas: motivations

For a prominence study we need to consider:

- Partially ionized environment
- ✓ Radiative transfert
- Ambient emission
- Heterogeneous at small and large scales
- The fine structure is not resolved by the instruments

Spectroscopic diagnostics are essential (we use all the information of the emitted photons)

<u>A spectral atlas</u>: to give reference values for the physical parameters of an extremely complex structure such as a prominence.

The data

Prominence and QS 10/1999 (MEDOC #4)
 Spectral range: 800 - 1250 Å (SUMER det A, dx=1", dλ=0.044 Å)
 The spectral UV band covers the temperatures from the cool regions from the core of the prominence to the ambient corona.

S. Parenti et al., 2004

Data processing

- Determination of the stray light contribution
- Wavelength calibration for each spectral window, for the QS and prominence independently.
- ✓ Measurement of the profile for more than 1500 lines for the three datasets (I, λ_o , FWHM).
- ✓ Line identification and radiometric calibration.
- About 40 new lines identified (mostly from ions at low ionization stage) between the QS and the prominence

First complete prominence atlas in the range 800-1250 Å

S. Parenti, J-C Vial, P. Lemaire, 2004, 2005a

The final product

S. Parenti, J-C Vial, P. Lemaire, 2005a

lon		Quiet Sun			Prominence I		Prominence II		
Si VII **	1135.3530	1135.300 b	1.332	0.286	1135.346 b	0.353	0.169	1135.387 b 0.146	0.165
**		1135.550	0.470	0.125	1135.410	0.427	0.323	1135.410 0.163	0.244
Al XI/2 **	568.1500				1136.422 b	2.755	0.111	1136.445 b 1.797	0.095
Ne V **	1136.5100	1136.523 b	0.260	0.178	1136.526 b	0.270	0.151	1136.520 b 0.233	0.174
Ne V/2 **	568.42	1136.702 b	3.712	0.086					
Si V -Si VII	1137.2670	1137.234 b	0.426	0.190	1137.154 b	0.044	0.079		
S IV (*)	1138.1400	1138.055 w	0.264	0.102					
CI	1138.3831	1138.396 i	1.137	0.119					
C I **	1138.5570	1138.614 i	3.696	0.161	1138.629 w	0.247	0.177	1138.616 w 0.198	0.164

lon	λ _t (Å)	Transition	logT _{max}	Ref.
Si VII	1135.3530	2s ² 2p ² 3d ⁴ F _{3/2} -2s ² 2p ² 3d ² S _{1/2}	5.7	1
A1 XI/2	568.1500	1s ² 2s ² S _{1/2} -1s ² 2p ² P _{1/2}	6.1	1
Ne V	1136.5100	2s ² 2p ² ³ P ₁ -2s 2p ³ ⁵ S ₂	5.6	2
Ne V/2	568.42	2s ² 2p ² ³ P ₀ -2s 2p ³ ³ D ₁	5.6	1
Si V - Si VII	1137.2670	2p ⁵ 3s ³ P ₂ -2p ⁵ 3p ¹ P ₁	5.5	1
S IV (*)	1138.1400	3s 3p ² ² S _{1/2} -3p ³ ² P _{1/2}	5.0	1
CI	1138.3831	2s ² 2p ² ³ P ₀ -2s ² 2p 6d ³ P ₁	<4.0	1
CI	1138.5570	$2s^2 2p^2 {}^3P_1 - 2s^2 2p 6d {}^3P_0$	<4.0	1

http://www.ias.u-psud.fr/medoc/science/parenti/intro.htm

Physical parameters

Non Thermal Velocities

 $FWHM_{meas}^{2} = FWHM_{solar}^{2} + FWHM_{inst}^{2}$ $v = \frac{c}{\lambda} \frac{FWHM}{2\sqrt{21}n2} \qquad v_{solar} = \sqrt{\frac{2kT}{M} + \xi^{2}}$

Lines from allowed transitions, well isolated and intense
 ~ 60 for the QS and ~ 45 for the prominence
 24 different ions from various elements
 T is for the maximum ionization fraction.

Non-Thermal Velocity

QS

\checkmark NTV_p < NTV_{QS}

 Different NTV gradient with T
 Absorption effects in the QS on low ionized ions

Parenti & Vial, 2007

The Differentiel Emission Measure

 $I_{obs} = \int G(T)DEM(T)dT \qquad DEM(T)dT = N_e^2 \frac{dh}{dT}dT$

✓ Selection of lines : ~ 60 for each dataset ✓ CHIANTI (v 4.2) atomic database (Mazzotta et al. Ion fraction; coronal abundances)

Inversion technique to estimate DEM(T)

Energy budget

Parenti & Vial, 2007, 2008

H-Lyman continuum

The H-Lyman continuum forms in the cooler core of the prominence through photon-ionization (by chromospheric incident radiation) followed by radiative recombination.

✓ brightness temperature (T_B) ✓ color temperature (T_C)

These are essential parameters to model a non-LTE hydrogen atmosphere.

 $L_{\lambda}(\mu = 1) \cong S_{\lambda}(\tau_{\lambda} = 1) = \frac{B_{\lambda}(\tau_{c})}{L}$ $L_{\lambda} = \frac{2hc^2}{b\lambda^5} \exp\left(-\frac{hc}{\lambda kTc}\right)$ T_B T_C ~ T (< 15000 K)

Parenti S., Lemaire P. & Vial J-C, A&A, 2005

	$L_{ m o}$	$T_{ m B}$	$\sigma_{\mathrm{T}_{\mathbf{B}}}$	Т	$\sigma_{ m T}$	Ь	$\sigma_{ m b}$
QS (corrected)	62.2	6536	105	8753	10	452	11
Prom. A_1	23.0	6277	96	8281	281	438	301
Prom. A.2	24.8	6296	97	7564	231	67	44

✓ Dilution factor $0.37 \approx 0.38 = I_{PRM}/I_{QS}$

✓ Gouttebroze et al ('93) slab model:

T = 8000 K \longrightarrow $L_0 = 21 \text{ mW} \text{ m}^2 \text{ sr}^{-1} \text{ }^{-1}$

The emission of the prominence depends only from the incident chromospheric radiation.

Other applications

To understand the PCTR: I

Anzer & Heinzel 2008

- DEM (T), n_e used to model 1D slab and study the heating.
- Mechanical heating, conduction, dissipation by Alfven waves do not satisfy the required heating injection in the inner part of the PCTR

Stellmacher & Wiehr 2008

- Use the H-Lyman lines radiance to compare to the H-Balmer's.
- Results: the two series are formed in different layers: the Lyman in the upper TR.

To understand the PCTR: II

Karpen & Antiochos 2008

- Condensation formation by impulsive heating in 1D long loops.
- Heating close to the footpoints with $dt < \tau_r$ better reproduces the observations.

Other hot topics

The shape of the DEM

Kucera & Landi 2008

- Erupting prominence
- TRACE, SUMER, H α
- H-continuum absorption & low level heating at the prominence base (affecting only low TR lines).

Fine structure through H-Lyman profiles

Observations: Vial et al. 2007

Model: Gunár et al. 2008

 Multi-thread model with dynamics and non-LTE

Open questions

PCTR plasma properties: implications in the stability and energetic
 EUV absorption (mass)
 Small scale structure and its dynamics
 Heating

Observations needed
✓ Higher temporal and spectral resolution
✓ Better T coverage: HOP/JOP...

Ongoing Projects

<u>JOP 207/HOP 82</u>

 Eruptive and quiescent prominences Atlas with SOHO and Hinode (Parenti, Labrosse, Vial)

- Spectral atlas with SUMER, CDS, EIS; SOT, UVCS
- H and He absorption
- Plasma parameters

Quiescent Prominence Structure and Dynamics (Berger et al.)

October 2008

