Syntheses of Concepts Involving Filaments A few research directions for Solar Cycle 24

Sara F. Martin Helio Research La Crescenta, CA, USA Different Ways of Synthesizing
Diverse Observations of Same Subject
Active Region Filament ↔ Quiescent Filaments

Same Topic – Different Approaches

Filaments

Observations Modeling

Different but Related Subjects

- Filament Channels, Filaments, Filament Cavity, Overlying Coronal Loop System
- Erupting filaments, Erupting Filament Cavities, CMEs, Flares

Same subject – Diverse Cases

Active Region to Intermediate

The Continuous Spectrum of Filaments

From High Flux Density — Low Flux Density

From low vertical height ~10, 000 km

up to height of ~ 90,000 km

Properties in Common among Filaments

1. Beneath a Coronal Loop System

2. Above a Polarity Reversal Boundary (Polarity Inversion Line) characterized by:

- With cancelling magnetic fields at the photosphere
- A filament channel in the chromosphere

3. Continuous Spectrum of Similar Types of Both Small and ILrge-scale Structure

Spines that is narrow, ribbon-like structure Barbs Arcs or bubbles at base of barbs

- All composed threads
 - with similar dynamics
 - with consistent chirality between the spines and barbs

Same subject – Different Wavelengths

Enablement of Synthesis: multi-wavelength observations from space

All filaments can merge if they have the same chirality

Anderson and Martin 2004, ASP Conf. Series,

Location of the filament spine along a polarity reversal boundary

Counterstreaming along spine

Counterstreaming along spine

The spectrum of filaments

Between active region and intermediate

Filament Spines and Barbs from All Perspectives

SST 2003 Aug 28 Helio Research 2004 Aug 10

Quiescent filament: with spine + large barbs + arcs at base of barbs

Helio Research

Same subject – Different Perspectives Higher Spatial Resolution

Quiescent filament: with spine + large barbs + arcs at base of barbs

2001 Sep 30

Oct 2

Oct 3

Quiescent filament: with spine + large barbs + arcs at base of barbs

2001 Sep 30

Oct 2

Oct 3

Filaments seen in different perspective

The most important properties of filament threads:

*** They are Field-aligned***

*** with continuous field-aligned flows***

•These property enables the modeling of the 3-D structure of filaments directly from observations

Concluding remarks for Cycle 24

- All filaments that consisting of spines and barbs are the same type of physical structure and require the same modeling.
- However, 3 mechanisms are required, one for forming spines a second for forming barbs, and a third for forming arcs at the base of barbs.
- Filament modelling should concentrate on the physics of dynamic threads. The duration of mass in threads is short; the primary requirement is a mechanism energetic enough to drive mass through a thread at least once.

Are there any filaments that do not fit into this spectrum of filaments?

Coronal Spiders – Coronal condensations up to 1/10 solar radius(70,000)

Dimensions typically in the range of 10,000 to 50,000 km

(Allen, U. A. Bagenal, F. and Hundhausen, A. AAS SPD #28, #01.53, 1997; New Perspectives on Solar Prominences, ASP Conf. Series, Vol 150, p 290, 1998)

Some faint high filaments

(Martin and Engvold, presented at AAS 2006 Jan meeting)

The End