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What are coronal loops!?

Is there such a thing as a typical coronal loop?
Do all loops share common properties!?
Do we agree on those! and if so...
Are the properties sufficiently well constrained to test the models!?
What do the models need from observations!?
Are we getting that information?

Ultimately, where is the bottleneck?
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What temperatures do they reach!?

Ko et al. (2009)
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Soft X-ray loops
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Static vs Dynamic

Soft X-ray loops

Pre-SOHO results indicated (Klimchuk 2008)

e Hot (T >2MK)
® Long |IV€C| (Tlife >>Tcoo|)

TRACE171A9/23/OO 0(1)-...21(}|||4I£}|||l|||l L | |

Time: 2000-09-23T12:15:47.000Z dt = 0.00000
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Soft X-ray loops

Pre-SOHO results indicated (Klimchuk 2008)

e Hot (T > 2MK)
® LOng |IV€C| (Tlife >>Tcoo|)
® Obey static equilibrium scaling laws
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Soft X-ray loops

Pre-SOHO results indicated (Klimchuk 2008)

Hot (T > 2MK)

LOng |IV€C| (Tlife >>Tcoo|)
Obey static equilibrium scaling laws

Consistent with steady heating
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Soft X-ray loops

Pre-SOHO results indicated (Klimchuk 2008)

Hot (T > 2MK)

LOng |IV€C| (Tlife >>Tcoo|)
Obey static equilibrium scaling laws

Consistent with steady heating

TRACE 171A 9/23/00 T - R TS
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Static vs Dynamic

Soft X-ray loops
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Soft X-ray loops

BUT... o

Yohkoh/SXT 1993/03/21 01:39:00

® There is a dynamic Soft X-ray component:

= Active region transient brightenings (Shimizu 1992-1995)
= |t has a EUV counterpart (Berghmans 2001)

= X-ray loops cool to EUV
(Winebarger, Ugarte-Urra,Warren 2005-2008)
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Soft X-ray loops
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Soft X-ray loops

Solar Active Region Evolution: Comparing Models with Observations
ASP Conference Series, Vol. 68, 1994
K. S. Balasubramaniam and George W. Simon (eds.)

Magnetic Reconnection in the Solar Corona

Saku Tsuneta

Institute of Astronomy, The University of Tokyo
Mitaka, Tokyo 181, Japan

law distribution over 5 orders of magnitude. Shimizu (1994) concludes that
the microflares observed by Yohkoh alone cannot heat the active-region corona,
assuming that the same power-law continues to weaker undetectable events.

Do these two observations rule out Parker’s nanoflare hypothesis (Parker
1988)7 x-ray morphology and fairly flat frequency distribution of microfiares
appear to be inconsistent with the hypothesis. There is, however, a possibility
that we observe only the tip of the iceberg because of the high x-ray back-
ground (diffuse loops) of the active regions, and that there is a steep increase
of the number of weaker microflares undetectable with Yohkoh. We need more
sensitivity (higher spatial resolution and relevant temperature range) to give a
definite result.
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law distribution over 5 orders of magnitude. Shimizu (1994) concludes that
the microflares observed by Yohkoh alone cannot heat the active-region corona,
assuming that the same power-law continues to weaker undetectable events.

Do these two observations rule out Parker’s nanoflare hypothesis (Parker
1988)7 x-ray morphology and fairly flat frequency distribution of microfiares
appear to be inconsistent with the hypothesis. There is, however, a possibility
that we observe only the tip of the iceberg because of the high x-ray back-
ground (diffuse loops) of the active regions, and that there is a steep increase
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sensitivity (higher spatial resolution and relevant temperature range) to give a
definite result. , e.g. we need XRT/Hinode.
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Steady AR Impulsive AR
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What is the corona we want to explain?
Are they exclusive!




Static vs Dynamic

EUV loops

Warm (0.5 < T < |-3 MK)
Over dense relative to static equilibrium

Super hydrostatic scale heights

ShOI‘t-lived (Tlife > Tcool)



Static vs Dynamic

EUV loops

® Warm (0.5 <T =< [-3 MK)

dense relatives

(15MK) o o FeXIV27420 A (1.9 MK)

Fe XIll 202.04 A Fe XV 284.16 A (2.1 MK) Fe XVI262.98 A (2.7 MK)



Static vs Dynamic

EUV loops

® Warm (0.5 <T =< [-3 MK)
® Opver dense relative to static equilibrium

® Super hydrostatic scale heights



Static vs Dynamic

EUV loops

® Warm (0.5 <T =< [-3 MK)

TRACE 171 A, 1999 NOV/G,
R
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® Warm (0.5 <T =< [-3 MK)
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Static vs Dynamic

EUV loops

® Warm (0.5 <T =< [-3 MK)

® Opver dense relative to static equilibrium

TRACE 171 A, 1999 Nov 6, 22: Simulation of hydrostatic equilibrium i/ /
/

(Scale height A(T=1 MK)=47,000 km

® Super hydrostatic scale heights
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EUV loops

Warm (0.5 < T < |-3 MK)

Super hydrostatic scale heights

ShOI‘t-lived (Tlife > Tcool)

IJ’ 'v. J v
ture (K) Apex Temperature (K)

Winebarger et al. (2004)
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EUV loops
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EUV loops
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Del Zanna, Del Zanna & Mason (2003), Young et al. (2007), Ugarte-Urra et al. (2009)

® These loops host (slow magnetoaccoustic) waves

De Moortel et al. (2002), Marsh (2006)
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Static vs Dynamic

EUV loops
® (Coronal rain
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® Thermal non-equilibrium: steady foot-point heating
Mueller, Peter, Hansteen (2003-2005)
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e« MM

Aschwanden &
Nightingale (2005)
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® Have we seen elementary strands!?
® Fundamental building blocks:

- homogeneous density and temperature across loop’s axis

- homogeneous density and temperature across strand’s axis




Structuring: are loops multi-stranded?

" W TRACE (05 arcsec)

Multi-Thread Model

Aschwanden et al. (2000)
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tructuring: are loops multi-stranded!?
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Structuring: are loops multi-stranded?
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Structuring: are loops multi-stranded?

Filling factors

EMISSION MEASURE ANALYSIS OF ACTIVE REGION LooOPS OBSERVED WITH EIS
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Let’s suppose some of them are!!

Do the strands evolve coherently or not!?

Narrow DEM Broad DEM
Homogeneous Inhomogeneous
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Spectroscopic analysis of 20 Loops

(Warren et
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Implications for heating

Can we reconcile these observations with coronal heating?
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No observed braiding

A Narrow DEM?

Parker (1983)

Nanoflare storms = narrow DEMs

Parker, Cargill, Klimchuk, Patsourakos, Reale, Walsh...
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Implications for heating

Nanoflares
Convection = Braiding = Stress = Reconnection (nanoflare)

Cons:
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' Monolithic loops?

Ve No observed braiding
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Pros:

Impulsive nature

Can explain overdens.
Multi-strands

Broad DEMS

No observed braiding

.! ~ .
Coherence?
Parker (1983)

Nanoflare storms = narrow DEMs

Parker, Cargill, Klimchuk, Patsourakos, Reale, Walsh...
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Implications for heating

Chromospheric heating

Coronal Nanoflares Chromospheric Nanoflares

" 1L R * Reconnection at chromospheric level

¢ Cross-field diffusion more efficient
U

coherence

* Possible explanation for:
upflows, waves

Aschwanden et al. 2005-2008
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Implications for heating

Chromospheric heating

Aschwanden et al.
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Implications for heating
Chromospheric heating

Open questions:
e Coronal heating can also explain:
upflows and chromospheric evaporation
* How much of that dissipation at lower heights goes into
heating the corona: explosive events, blinkers, etc.
e Radiative losses?

Cons:
* Hinode: no mixed polarities in plages (Title, 2008)
e Un-tangling of the corona
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Chromospheric heating

Brooks

Ugarte—Urra & Warren

EIS Fe XVI 40" slot raster

on SOT Magnetodgrams
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Summary

EUV loops = impulsive heating

X-ray loops: static and steady could work, BUT... open questions
EUV loops can have narrow (also broad) temperature distrib.
Filamentation: evolution, filling factor, SOT fine structuring
J
multi-threads

Multi-thread + Narrow T distrib. = coherence

The debate has shifted to heat localization



What are coronal loops!?



What are coronal loops!?

Is there such a thing as a typical coronal loop?



What are coronal loops!?

Is there such a thing as a typical coronal loop? Maybe



What are coronal loops!?

Is there such a thing as a typical coronal loop? Maybe

Do all loops share common properties!?



What are coronal loops!?

Is there such a thing as a typical coronal loop? Maybe

Do all loops share common properties? No? Not sure



What are coronal loops!?

Is there such a thing as a typical coronal loop? Maybe
Do all loops share common properties? No! Not sure

Do we agree on those! and if so...



What are coronal loops!?

Is there such a thing as a typical coronal loop? Maybe

Do all loops share common properties? No! Not sure

Do we agree on those! and if so... ‘



What are coronal loops!?

Is there such a thing as a typical coronal loop? Maybe
Do all loops share common properties? No? Not sure

Do we agree on those! and if so... ‘

Are the properties sufficiently well constrained to test the models!?



What are coronal loops!?

Is there such a thing as a typical coronal loop? Maybe
Do all loops share common properties! No? Not sure
Do we agree on those! and if so... ‘
Are the properties sufficiently well constrained to test the models!?

What do the models need from observations?



What are coronal loops!?

Is there such a thing as a typical coronal loop? Maybe
Do all loops share common properties! No? Not sure
Do we agree on those! and if so... ‘

Are the properties sufficiently well constrained to test the models!?

What do the models need from observations? ‘



What are coronal loops!?

Is there such a thing as a typical coronal loop? Maybe
Do all loops share common properties! No? Not sure
Do we agree on those! and if so... ‘
Are the properties sufficiently well constrained to test the models!?

What do the models need from observations? ‘

Are we getting that information!?



What are coronal loops!?

Is there such a thing as a typical coronal loop? Maybe
Do all loops share common properties? No! Not sure
Do we agree on those! and if so... ‘
Are the properties sufficiently well constrained to test the models!?

What do the models need from observations? ‘

Are we getting that information? No? Solar Cycle 24



What are coronal loops!?

Is there such a thing as a typical coronal loop? Maybe
Do all loops share common properties? No? Not sure
Do we agree on those! and if so... ‘
Are the properties sufficiently well constrained to test the models!?
What do the models need from observations? ‘
Are we getting that information? No? Solar Cycle 24

Ultimately, where is the bottleneck?



What are coronal loops!?

Is there such a thing as a typical coronal loop? Maybe
Do all loops share common properties? No? Not sure
Do we agree on those! and if so... .
Are the properties sufficiently well constrained to test the models!?
What do the models need from observations? ‘
Are we getting that information? No? Solar Cycle 24

Ultimately, where is the bottleneck?

Observations
We need to provide a coherent consensual picture of
multi-temperature loop structuring, formation and evolution
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* We need to recognize that temporal dimension is important:
* multi-temperature picture: loops are evolving
* cooling times = multiple strands

* Diagnostics are crucial: Ne, DEM, Temperature, flows (doppler)

e Statistically significant datasets.

Spectroscopic + Time dependent properties of
multiple loops / multiple AR’s



Magnetic complexity

Dalla et al. (2007)
2880 sunspot regions from NOAA catalog

companions
old regions

ares >
Flares > CS5

Table I Mt Wilson classification rules.

Class Feature/clssification rule

A single dominant spot often linked with a plage of opposite magnetic polanty
A pair of dominant spots of opposite polanty

Complex groups with irregular distnbution of polanties

Bipolar groups with more than one clear North —South polanty inversion line

Umbrae of opposite polanty together in a single penumbra

Ireland et al. (2008)




Other topics

Full active region modeling

3D forward modeling



