

Geospace Environment Modeling System for Integrated Studies

GEMSIS-Sun: Modeling of Particle Acceleration and Transport in Solar Flares

S. Masuda, T. Minoshima, T. T. Yamamoto,
Y. Miyoshi (STEL, Nagoya-Univ.)
S. Inoue, and K. Kusano (ESC/JAMSTEC)

-140

X (arcsecs)

Observed Relationships between MHD Dynamics and Particle Acceleration

Ejecta velocity and non thermal intensity (Ohyama & Shibata, 1998; Temmer et al. 2008) Convection *E*-field and non-thermal intensity/spectra (Asai et al. 2004; Liu et al. 2008)

Aim

- Close relationship between <u>particle</u> <u>acceleration/transport</u> and the <u>configuration and</u> <u>evolution of the macroscopic electromagnetic field</u>
- Numerical calculation of the <u>time evolution of the</u> <u>particle phase-space distribution</u> in the flare electromagnetic field, performed with <u>coronal real</u> <u>parameters</u>
- Future: direct comparison between the hard X-ray and microwave observations

This study now focuses on acceleration during the transport.

Drift Approximation (Northrop, 1963)

 Macroscopic scale >> particle scale

• 1st invariant is conserved

- Particle motion
 - V// (along mag. field): fast
 - *E*x*B* drift
 - Other drift: slow

Guiding-center drift kinetic equation

$$\frac{\partial f}{\partial t} + \nabla \cdot \left(\frac{d\mathbf{r}}{dt} f\right) + \frac{\partial}{\partial \gamma} \left(\frac{d\gamma}{dt} f\right) + \frac{\partial}{\partial \mu} \left(\frac{d\mu}{dt} f\right) = \left(\frac{\partial f}{\partial t}\right)_{c}$$

$$\frac{d\mathbf{r}}{dt} = \mathbf{v}_{d} + (\mathbf{v} \cdot \mathbf{B})\mathbf{B} / B^{2}$$

$$\frac{d\gamma}{dt} = \frac{u^{2}}{\gamma} \frac{1 - \mu^{2}}{2} \frac{\partial \ln B}{\partial t} + \frac{\mathbf{v}_{E}}{c} \cdot \left[c \frac{u^{2}}{\gamma} \left(\frac{1 - \mu^{2}}{2} \nabla \ln B \right) + \frac{\mu^{2} \left(\frac{B}{B} \cdot \nabla \right) \frac{B}{B} \right] + \mu u \left(\frac{\partial}{\partial t} + \mathbf{v}_{E} \cdot \nabla \right) \frac{B}{B} \right]$$

$$\frac{d\mu}{dt} = \left(1 - \mu^{2}\right) \left[-\frac{1}{2} \left(\mu \frac{\partial}{\partial t} + \frac{cu}{\gamma} \frac{B}{B} \cdot \nabla \right) \ln B + \frac{\mathbf{v}_{E}}{c} \cdot \left\{ c \mu \left(-\frac{1}{2} \nabla \ln B \right) + \left(\frac{B}{B} \cdot \nabla \right) \frac{B}{B} \right) + \frac{\gamma}{u} \left(\frac{\partial}{\partial t} + \mathbf{v}_{E} \cdot \nabla \right) \frac{B}{B} \right\} \right]$$

$$u = \gamma v / c = \sqrt{\gamma^{2} - 1}$$

$$\mathbf{v}_{d} \approx \mathbf{v}_{E} = \frac{\mathbf{E} \times \mathbf{B}}{B^{2}} c$$

$$f = f(x, z, \mu, \gamma; t)$$
Acceleration due to gradient B drift

Acceleration due to gradient B drift Acceleration due to Curvature drift Centrifugal acceleration

Model description

- Magnetic field: Analytic model by Lin et al. (1995)
- 2-dimension
- Move the position of NL to <u>upward</u> => flare evolve
 - Change the magnetic field configuration => <u>induction</u> <u>electric field</u>

Flare evolution

- Since the motion of NL is not directly observed
 - <u>Change the position of FP</u>, which is connected with NL via separatrix
 - The motion of FP is well observed as the flare ribbon (e.g., Qiu et al. 2002)

50 keV

Phase space distribution

50 keV

Phase space distribution

50 keV

Phase space distribution

Summary

- Numerical modeling of particle acceleration and transport with the **drift-kinetic approach**.
- Three different types of acceleration mechanisms: Gradient B and curvature drift acceleration, and centrifugal acceleration.
- The resultant phase space distribution depends on which mechanism most efficiently works.
- Temporal evolution, spatial distribution, energy and pitch-angle distribution should be compared to the observations.

Future Plan

<u>Diffusion processes</u> (Coulomb collisions, waveparticle interactions) will be included.

<u>Conversion to emissions</u> is necessary for the direct comparison with the observations

<u>A simulation using observational magnetic field</u> <u>data</u> is possible through modeling of coronal magnetic field, e.g. Non-Linear Force Free Field model.

Comparison with multi-wavelength observations

