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Electric fields on the solar surface determine the flux of 

magnetic energy and relative magnetic helicity into flare and 

CME-producing parts of the solar atmosphere: 

    

EM

t
= dS ˆ n 

S

c

4
E B dS ˆ n 

S

1
4

(v B) B,

EF

t

1

4
dS

S

Bnuh (Bh
(P )-Bh ), where Bnuh (vhBn vnBh ),

dH

dt
= 2 dS ˆ n 

S

Ap E 2 dS (AP Bh )vn (AP vh)Bn{ }
S

.

Here, EM/ t is the change in magnetic energy in the solar atmosphere, 

EF/ t is the difference between the rate of change of total magnetic energy 
and the potential-field magnetic energy, given a surface distribution of Uh 

(Welsch 2006, ApJ 638, 1101), and dH/dt is the change of magnetic helicity 
of the solar atmosphere. 

The flow field v is important because  to a good approximation, 
 E =-v/c x B in the layers where the magnetic field is measured.  Here E is 

the electric field, B is the magnetic field, and Ap is the vector potential of 
the potential magnetic field that matches its measured  normal component. 
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Flow fields and electric fields provide needed physical 

boundary conditions for data-driven or assimilative MHD 

models of the solar atmosphere 
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Approaches to Computing Electric 

Fields from Magnetograms 

• Assume E=-v/cxB and find v from local 
correlation tracking techniques applied to 
changes in line-of-sight magnetograms (e.g. 
FLCT method of Fisher & Welsch) 

• Use vector magnetograms and normal 
component of induction equation to determine 3 
components of v (e.g. ILCT method of Welsch et 
al (2004)and MEF method of Longcope (2004) 

• Use vector magnetograms to solve all 3 
components of the induction equation (main 
topic of this talk) 
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How much information about the magnetic induction  

equation can one extract from a time sequence of  

(error-free) vector magnetograms taken in a single layer? 

Kusano et al. (2002, ApJ 577, 501) stated that only the equation for 

the normal component of B (Bz) can be constrained by sequences of 

vector magnetograms, because measurements in a single layer 

contain no information about vertical derivatives.  Nearly all current 

work on deriving flow fields or electric fields make this same 

assumption.    But is this statement true? 
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To investigate this question, we have found it is useful to use the “poloidal-

toroidal” decomposition (henceforth PTD) of the magnetic field and its time 
derivatives.  This formalism has been used extensively in the dynamo 

community, and in anelastic 3D MHD codes such as ASH and ANMHD to 
ensure that the magnetic field is solenoidal.  Before considering time 

variability and the induction equation, we first use this formalism to 

describe the magnetic field: 

Can we use the other components of 

the magnetic induction equation? 

Here,  is the “poloidal” potential, and J  is the “toroidal” potential.  We 

now show how, starting from a single vector magnetogram, one can 
derive  the potential functions , / z, and J .  Here, we use Cartesian 

coordinates, but this approach can be done in spherical coordinates as 
well. 

 and J have the nice properties that their horizontal laplacians can be 
directly related to the vertical magnetic field component and the vertical 

current density: 
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Now, apply the horizontal divergence operator h to the 

magnetic field B: 

The Poisson equation (4) can be understood physically through 

the solenoidal constraint on B:  The left hand side of equation (4) 

must be equal and opposite to the vertical derivative of Bz.  Since 

the horizontal laplacian of  is -Bz it follows that the horizontal 

laplacian of / z must be - Bz/dz. 

From a 2-D map of the 3 components of B, one can solve the 

three Poisson equations (2-4)  for , / z, and J, subject to 

appropriate boundary conditions.  Note that some information 

about vertical derivatives in the solution was obtained from 

equation (4). 
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What are the correct boundary 

conditions for J, / z, and ? 
The transverse components of the magnetic field are determined 

entirely by J and / z.  Equation (1) can be re-written 
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from which we derive these 

coupled von-Neumann 
boundary conditions: 

Here, / n denotes derivatives 

normal to the magnetogram 
boundary, and / s denotes 

derivatives along the boundary. 
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The Boundary conditions for  itself do not affect the derived values 

of the magnetic field B, since it only affects the field component Bz 
through the Poisson equation (2) itself.  But boundary conditions for 

 do affect the solution for the vector potential: 

Here,  is a scalar (gauge) potential, left unspecified. 

To Summarize:  We have shown exactly how one can take knowledge of 

the vector magnetic field within a bounded 2-d region, and solve 3 Poisson 
equations, using the boundary conditions that match the observed 

magnetic field along the boundaries of the magnetic field map.  One can in 

fact reproduce the input magnetic field after the fact from the solutions of 
the 3 Poisson equations. 

Now, consider what happens when we replace B by its time derivative, B/

t, in equation (1):  All of the formalism we have just done will carry 

through in exactly the same way – we will derive three Poisson equations, 
analagous  to equations (2-4).  The difference is that the solutions to these 

Poisson equations contain information about all 3 components of the 
magnetic induction equation. 
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On to the induction equation… 
Performing the substitution just described, we derive these Poisson 

equations relating the time derivative of the observed magnetic field B 
to corresponding time derivatives of the potential functions: 

The boundary conditions for equations (10) and (11) are specified by the 

time derivatives of the horizontal fields at the boundaries.  The boundary 
condition for equation (9) is not constrained by the observed time 

derivatives of the magnetic fields.  These equations and boundary 
conditions  parallel exactly the case for the potentials that describe the 

magnetic field itself in equations (2-4). 

Since the time derivative of the magnetic field is equal to -c xE, we can 

immediately relate the curl of E and E itself to the potential functions 
determined from the 3 Poisson equations: 
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Relating xE and E to the 3 potential functions: 

The expression for E in equation (13) is obtained simply by uncurling 

equation (12).  Note the appearance of the 3-d gradient of an 
unspecified scalar potential . 

The induction equation can be written in component form to illustrate 

precisely where the depth derivative terms Ey/ z and Ex/ z occur: 

Note that these terms originate from the horizontal divergence of time 

derivatives of the horizontal field (see the discussion following equation 4). 
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Does it work? 
First test:  From Bx/ t, By/ t, Bz/ t computed from Bill’s RADMHD 

simulation of the Quiet Sun, solve the 3 Poisson equations with boundary 
conditions as described, and then go back and calculate B/ t from equation 

(12) and see how well they agree.  Solution uses Newton-Krylov technique:  

Bx/ t RADMHD 

Bx/ t derived 

By/ t RADMHD Bz/ t RADMHD 

By/ t derived Bz/ t derived 

Bz/ t  vs Bz/ t 

Bx/ t  vs Bx/ t 
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Comparison to velocity shootout case: 
Bx/ t ANMHD By/ t ANMHD Bz/ t ANMHD 

Bz/ t derived By/ t derived Bx/ t derived 
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Velocity shoot out case (cont’d) 
Ex Ey Ez 

Ex derived Ey derived Ez derived 
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Summary: excellent recovery of xE, 

only approximate recovery of E. 

Why is this?  The problem is that E, in contrast to xE, is mathematically 

under-constrained. The gradient of the unknown scalar potential in 
equation (13) does not contribute to xE, but it does contribute to E. 

In the two specific cases just shown, the actual electric field originates 

largely from the ideal MHD electric field –v/c x B.  In this case, E·B is 

zero, but the recovered electric field contains significant components of E 
parallel to B.  The problem is that the physics necessary to uniquely 

derive the input electric field is missing from the PTD formalism.  To get a 
more accurate recovery of E, we need some way to add some knowledge 

of additional physics into a specification of . 

We will now show how simple physical considerations can be used to 

derive constraint equations for . 
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One Approach to finding :  A Variational 

Technique 

The electric field, or the velocity field, is strongly affected by forces acting 

on the solar atmosphere, as well as by the strong sources and sinks of 
energy near the photosphere.  Here, with only vector magnetograms, we 

have none of this detailed information available to help us resolve the 
degeneracy in E from .   

One possible approach is to vary  such that an approximate Lagrangian 
for the solar plasma is minimized.  The Lagrangian for the electromagnetic 

field itself is E2-B2, for example.  The contribution of the kinetic energy to 
the Lagrangian is  v2, which under the assumption that E = -v/c x B, 

means minimizing E2/B2. Since B is already determined from the data, 

minimizing the Lagrangian essentially means varying  such that E2 or E2/
B2 is minimized.  Here, we will allow for a more general case by minimizing 

W2E2 integrated over the magnetogram, where W2 is an arbitrary weighting 
function. 
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A variational approach (cont’d) 
min dxdyW 2 (Ex
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min dx dy L(x,y) (22)

Here the x,y,z components of EI are assumed to be taken from equation 

(13) without  the  contribution. 

To determine / z contribution to the Lagrangian functional, we can use 
the relationship E·B=R·B where R is any non-ideal contribution to E.  

Performing the Euler-Lagrange minimization of equation (22) results in 

this equation: 
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A variational approach (cont’d) 

h W 2 (Eh
I

h ) +Bh (Bh (Eh
I

h ) R B) /Bz
2( ) = 0 (24)

Evaluating the equation explicitly results in this elliptic 2nd order differential 

equation for : 

We have been pursuing numerical solutions of this equation, along with the 3 

Poisson equations described earlier.  Comparisons with the original ANMHD 
electric fields have been poor thus far.  This may be due to numerical problems 

associated with the large dynamic range of the magnetic field-dependent 
coefficients in this equation. 

A possibly more promising approach was recently suggested by Brian Welsch.  
Writing Eh = Eh

I- h , and noting that EzBz=R·B-Bh·Eh, equation (24) can be re-

written and simplified as 

h (W 2 /Bz)(E B) ˆ z ( ) = 0 (25)

or

ˆ z h ((W 2 /Bz )E B)( ) = 0. (26)
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A variational approach (cont’d) 

Equation (26) implies that we can write 

  
(W 2 /Bz )(cE B)h = (W 2 /Bz )(cEh Bz

ˆ z + cEz
ˆ z Bh ) = h (27)

Dividing by W2 and then taking the divergence of this equation, we derive an 

equation for  that involves the magnetic field or its time derivatives: 
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A variational approach (cont’d) 
If the non-ideal part of the electric field R is known or if one desires to 

specify how it varies over the magnetogram field of view, equation (28) can 
incorporate non-ideal terms in its solution.  However, we anticipate that most 

of the time, the non-ideal term will be much smaller than ideal contributions, 
and can be set to 0. 

Once  has been determined, it is straightforward to derive the electric field 
and the Poynting flux S=(c/4 )ExB: 

cEz = Bz

cR B
B2

h z Bh
W 2B2
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B2 Bh
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Bz

4 W 2 h (31); Sz =
h Bh
4 W 2 (32)



A variational approach (cont’d) 
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Finally, if one can ignore the non-ideal R B  term in equation (28), then the 

two special cases of W2B2=1(minimized kinetic energy) and W2=1 (minimized 
electric field energy) result in these simplified versions of equation (28) for : 

(W 2B2 =1:) h Bz
2

h( ) + h Bh h( )Bh( ) =
Bz

t
(33)

(W 2 =1:) h bz
2

h( ) + h bh h( )bh( ) =
Bz

t
(34)

Boundary conditions for  are not clear, but if the outer boundary of the 

magnetogram has small or zero magnetic field values, it is likely that the 
horizontal Poynting flux, and hence h , has a small flux normal to the 

magnetogram boundary.  Therefore we anticipate that Neumann boundary 
conditions are the most appropriate for applying to  if the boundaries are 

in low field-strength regions. 



A variational approach (cont’d) 
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Finally, how do we relate the variational solution for the total field E=EI- h  

back to the PTD solutions for / t and J/ t and the potential function ?  
The two solutions differ by , allowing us to express  in terms of  and 

/ t and J/ t: 
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Summary of current situation 
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• It is possible to derive a 3D electric field from a time sequence of 

vector magnetograms which obeys the Maxwell Faraday equation.  

This formalism uses the Poloidal-Toroidal Decomposition (PTD) 

formalism. 

•The PTD solution for the electric field is not unique, and can differ 

from the true solution by the gradient of a potential function.  The 

contribution from the potential function can be quite important. 

•An equation for a potential function, or for a combination of the PTD 

electric field and a potential function, can be derived from iterative 

techniques and from variational techniques. 

•The development and testing of numerical techniques for solving the 

variational techniques are currently underway. 


