Coronal HXR Sources

Lindsay Glesener, Säm Krucker Space Sciences Lab, UC Berkeley

Solar Cycle 24, Napa, CA

Coronal HXR Emission

- Coronal HXR emission
 - Acceleration region
 - Paths away from acceleration region
 - Footpoints
- Footpoints
 - Saint-Hilaire et al (2008) found that flare footpoints emit up to 100 (s cm² kev)⁻¹ at 30 keV.
- Coronal sources
 - Almost always fainter by an order of magnitude
 - Studies are limited by instrument dynamic range.

Occulted flares

- Active region has advanced beyond limb -- how far beyond?
- No bright footpoints -- fainter coronal HXR sources can be studied in detail.
- Krucker and Lin (2008) studied 55 occulted flares
 - Spectra, images, locations of thermal and nonthermal sources
 - Later, occultation heights were determined for most of these.

Above-the-loop-top HXR sources

SXR (Be Filter)

Ambient (thermal) density is low $n \sim 10^9$ cm⁻³ or even smaller

number of HXR producing electrons (instantaneous) $N_{\rm HXR} \sim n^{-1}$

Ratio number of accelerated to thermal electrons:

$$R = N_{HXR} / N_{thermal} \sim n^{-2}$$

Masuda et al. 1994, 2000

$N_{HXR} \gtrsim N_{thermal}$

Number of nonthermal (accelerated) electrons must be of the same order as ambient thermal electrons or larger.

HXR producing electrons are NOT a tail of a dominant thermal core population ...

$N_{HXR} > N_{thermal}$ means

 almost all energy is in accelerated electrons

(<E_{acc}>~20 keV vs E_{thermal}~0.2 keV)

- collisional heating is fast (~ 5 keV/s)
- accelerated electrons heat all thermal electrons to $< E_{acc} >$ within seconds

 \rightarrow above-the-loop-top source is entirely non-thermal (all electrons are accelerated)

 \rightarrow above-the-loop-top source is acceleration region

Partially disk-occulted flare of 2007Dec31

microwave limb is higher up, 17 GHz source is co-spatial.

Summary: measured parameters

$\sim 2.10^9 \text{ cm}^{-3}$
$\sim 8.10^{26}{ m cm}^3$
~ 30-50 G
~ 0.01
$\sim 2.10^9 \text{ cm}^{-3}$
$\sim 10^{36}$
~3.4
~1

 \rightarrow energy density of the accelerated electrons is comparable to that of the magnetic field

time series

thermal emission

rapid time variations

Nobeyama observations: thermal component (constant spectrum) gyro-synchrotron emission (decreasing spectrum)

HXR and microwave spectra

