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* The response of TSI to
flare.

¢* How could flares
contribute to the TSI
variations ?
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Flare signature in the TSI (1)
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v" TSI signature observed for only 4 flares. This is because the
TSI fluctuations (due to p-modes and convection) are about
~70ppm=0.1W/m? and hide the emission increase due to flare.



Flare signature in the TSI (I)

:zzig ] ' ™S :m (%) 280ct. 2003 _ 19819 s (W) 4Nov.2003
Woods et al., 2006 Total Flare | . . _
Dbservation GOES Energy for R?SO . {{ﬁt}gm . Rn%%»]gm
Date Class TSI, 1072 ergs  0.1-0.8 nm TSI 151
10/28/03 X17 6.0 162 0.22 0.43
10/29/03 X10 24 126 0.38 0.50
11/04/03 X28 2.6 49 0.85 0.69
9/7/05 X17 3.0 64 0.67 1.00
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Flare signature in the TSI (1)
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Total Flare

Dbservation GOES Energy for Ratio o 180 Rl

Date Class TSL 107 ergs 0108 mm IST TSI
10/28/03 X17 6.0 162 0.22 0.43
10/29/03 X10 24 126 0.38 0.50
11/04/03 X28 2.6 49 0.85 0.69
9/7/05 X17 3.0 64 0.67 1.00

v/ What about the emission above 190 nm ?
v/ What is the spectral distribution of the radiative output ?
v/ What for others (less energetics) flares ?




Data & Analysis

v We analyze the irradiance data of PMO,

DIARAD, and SPM (VIRGO/SoHO) from F
1996 to 2007.
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v We analyze the irradiance data of PMO, ok
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v To “see” the flares, we perform a conditional average or
superposed epoch analysis:

.. Extract time series around each flare in the GOES db.
2. Sum them: if random noise, it goes to zero.




The TSI response to flares

Conditional average of TSI for all flares such that
lo.1-08 > 10*3W/m? (X and strong M ones,)
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The visible irradiance response to flare

Conditional average of SPM color channels for all flares such that
lcoes > 10*3W/m? (X and strong M ones)
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M9.9 < lcors < X2|\/IRGO ~ SPM
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White Light Flares
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1 el A 2 . |ppm in the irradiance ~ 20% contrast in 5
- , *l! arcsec?. This agrees with other observations
i.,. "+ (Hudson, 2006)
T WL emission is ubiquitous
|5:arcseEL - | during flare !!




Relative Optical and TSI increase
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Energetics

“Red: random timing

v" Confirm the value of Woods et al.

(2006) for the effect of large flareson = [
the TSI. w z
v' Large uncertainty for smaller flares,
due to timing and statistics. E 0 e
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v' Largest flares radiate about 103!-1032 ergs (in average, lower estimation)



Preliminary Conclusion

Flares do impact the TSI, even small ones.
The emission at short (SXR, EUV) wavelengths during a flare
constitutes a relatively small part of the total radiated energy

(Egoes ~0.01 Eio: for large flares).

In particular, visible emission seems (quasi) systematic and
to constitute an important contribution to the TSI increase.

Largest flares have a total radiative energy of about 1032 ergs.

Could this imply a contribution of flares to long term
(cycle) TSI variation ?



Flare contribution to TSI variation (l)

v TSl variations can be reproduced at about 90% by using the
changing areas of bright (plages..) and dark (spot). Last 10% ?
Change from cycle to cycle ?

v Theideais:

» Each (nano)flare, in addition to heat the corona, produce an
emission at short wavelength (visible, near UV, IR) that has
been neglected before.

» Heating of the corona requires a continuum of flares (Parker
scenario).

» There is a natural modulation of the number (or the energy)
of flares in phase with the solar cycle due to the heating of

active region.
v Let’s quickly test this idea, neglecting many aspects.



Flare contribution to TSI variation (ll)

» Heating of the corona requires a continuum of flares (Parker
scenario).

The number of observed flares at energy W follows a power law:

N(W) = Ny(h)e

where o ~ 1.8. This is valid between respectively the low and

upper energy cut-off Wy and W- such that
W WN (W)W = W, is the energy released by all flares
. — ' per unit of time and surface

W1.as ~ W1.ar=102%erg; W2,as~1030erg; W2 ar~1032erg
Wiot,qs~3.10% erg.cm2.s';  WiotaAr~107 erg.cm2.s1 Aschwanden (2006)



Flare contribution to TSI variation (ll)

» Each (nano)flare, produce an emission at short wavelength
(visible, near UV, IR) that has been neglected before.

v We need a relation: d.S ~ f(W) ~ f(Egoes)
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v Difficult ! ... still in progress..

We will assume A5 ~ Wtot,AR



Flare contribution to TSI variation (ll)

» modulation of the number (or energy) of flares.

v With the active region we have a modulation of the energy:

f(Wiot x 0aR(t))

v Two ways to estimate 0 A g (t):
« Use DSA (minimum estimate)

*Use EIT/195 AR area from
segmentation (Barra et al., in,
preparation)




Flare contribution to TSI variation (lll)

» Results !
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v This is about 10% of the 1W TSI variation with the cycle.



Conclusion

Flares do impact the TSI, even small ones.
Largest flares have a total radiative energy of about 1032 ergs.

The emission at short (SXR, EUV) wavelengths during a flare
constitutes a small part of the total radiated energy (Egoes ~0.01

Etot)-

In particular, visible emission seems (quasi) systematic and
to constitute an important contribution to the TSl increase.

v Flares COULD contribute to the TSI variation, but probably not
much.

Thanks to W. Schmutz and S. Mekaoui for providing high cadence irradiance data !



Thank you !

[llustration of conditional average or superposed epoch analysis:

M9.9 flare (the 125th most important flare in the data set)
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Backup slides



When does the TSI increase ?

v" Conditional average for flare with I 1-0sam > 10-43 W/m?2

v Peak flare reference time comes either from 0.1-0.8nm peak time
or from the peak time of the derivative of the 0.04-0.1nm channel

From derivative of 0.04-0.1 From 0.1-0.8nm

ZN
JuU
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150 160 170

180 190 200 210
lime [mn]

Most of the TSI increase 1s before the maximum in 0.1-0.8nm, 1.€
during the impulsive phase.

22C



Conditional averaging: details (1/3)
Thus we can represent each time series as :

zi(t) = x(t) + yi(t)
where?i(?) is the solar noise andt yigt]s the signal due
to the flare, e.g. yi(t) = Si exp(— _. 2)0(t — to)In the
following, we concentrate on the tirrzle of the peak of the
flare to., such that yi(to)=Si, and z=z(to), x=X(to).

Our objective is that the signal becomes higher than the noise
In the average time-series; it is then natural to average on the
first nlargest (as deduced from GOES classification) events,
noted <...>n:

n

<z>n:Zzi:<az>n—|—<S>n
i=1



Conditional averaging: details (2/3)

We make the reasonable assumption that the x; are normally
distributed with variance o2, thus:

<x>u~o/vn

The ratio signal-over-noise of the averaged time-series is

<S> 1
x>, o

and depends thus on the distribution function of the Si. If the
average value decreases slower than n-12, then the SNR ratio
increase. For S;, the reasonable assumption is to adopt the
power law observed for flares at short wavelength:

C C
f(S)Nsl‘Hi:@ y OKN18




Conditional averaging: details (3/3)
Remember that we average the signal over the n largest flares,

i.e. $1>S5>...>S, and <S>n=1/n.2i-1 n Si

The rank ordering statistics gives us the most probable values
of the p-th variable Sp, :

And thus, ; .
11 1 Iz
Sn:(O(MNJrl))“EZ[ - ] or S”NEZ




Manual Movie



Average variation (ppm)
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Average variation (ppm)
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Average variation (ppm)
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Average variation (ppm)
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Average variation (ppm)
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Average variation (ppm)
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