Can Flares Contribute to the Total Solar Irradiance Variations?

Matthieu Kretzschmar and T. Dudok de Wit LPCE / CNRS, Université d'Orléans, France

The response of TSI to flare.

How could flares contribute to the TSI variations ?

Flare signature in the TSI (I)

✓ TSI signature observed for only 4 flares. This is because the TSI fluctuations (due to p-modes and convection) are about ~70ppm=0.1W/m² and hide the emission increase due to flare.

Flare signature in the TSI (I)

1358.0 1357.9 1357.9 1357.7 1357.7 1357.7 1357.6 1357.5 1357.4	(A) 28 Oct. 2003	Intradiance (M/m ²) 136 136 136	51.9 TIM TSI Background Flare Fit (GOES) XPS 0-27 nm 51.7 51.6 51.5 18 10 20	(A) 4 Nov. 2003	
Woods et al., 2	006	Total Flare		_	_
Observation	GOES	Energy for	Ratio	Ratio	Ratio
Date	Class	TSI, 10 ³² ergs	$\frac{ISI}{0.1-0.8 \text{ nm}}$	$\frac{0.1-27 \text{ nm}}{TSI}$	$\frac{0-190 \text{ nm}}{TSI}$
10/28/03	X17	6.0	162	0.22	0.43
10/29/03	X10	2.4	126	0.38	0.50
11/04/03	X28	2.6	49	0.85	0.69
9/7/05	X17	3.0	64	0.67	1.00

Flare signature in the TSI (I)

1358.0 1357.9 1357.8 1357.8 1357.8 1357.7 1357.6 1357.6 1357.5 1357.4 1357.4 1357.4 1357.4	(A) 28 Oct. 2003	13 13 13 13 13 13 13 13 13	51.9 TIM TSI Background Flare Fit (GOES) XPS 0-27 nm 51.7 51.6 51.5 51.5 18 19 20	(A) 4 Nov. 2003	
Woods et al., 200	06	Total Flare			
Observation	GOES	Energy for	Ratio	Ratio	Ratio
Date	Class	TSI, 10 ³² ergs	0.1-0.8 nm	$\frac{0.1-27}{TSI}$ mm	$\frac{0-190 \text{ mm}}{TSI}$
10/28/03	X17	6.0	162	0.22	0.43
10/29/03	X10	2.4	126	0.38	0.50
11/04/03	X28	2.6	49	0.85	0.69
9/7/05	X17	3.0	64	0.67	1.00

What about the emission above 190 nm?

What is the spectral distribution of the radiative output ?
What for others (less energetics) flares ?

Data & Analysis

Data & Analysis

Data & Analysis

✓ To "see" the flares, we perform a *conditional average* or superposed epoch analysis:

- 1. Extract time series around each flare in the GOES db.
- 2. Sum them: if random noise, it goes to zero. "Flare contribution to TSI", M. Kretzschmar et al., SVECSE, Bozeman, June 2008

The TSI response to flares

Averaged total radiative output of large flare

The visible irradiance response to flare

Averaged VISIBLE radiative output of large flares

Ippm ~0.0013 W/m^2 ~1.1 10³⁰ ergs/s

Ippm in the irradiance ~ 20% contrast in 5 arcsec². This agrees with other observations (Hudson, 2006)

WL emission is ubiquitous during flare !!

Relative Optical and TSI increase

Energetics

✓ Confirm the value of *Woods et al*.
 (2006) for the effect of large flares on the TSI.

✓ Large uncertainty for smaller flares, due to timing and statistics.

Preliminary Conclusion

- ✓ Flares do impact the TSI, even small ones.
- ✓ The emission at short (SXR, EUV) wavelengths during a flare constitutes a *relatively small* part of the total radiated energy (E_{goes} ~0.01 E_{tot} for large flares).
- In particular, visible emission seems (quasi) systematic and to constitute an important contribution to the TSI increase.
- \checkmark Largest flares have a total radiative energy of about 10³² ergs.

Could this imply a contribution of flares to long term (cycle) TSI variation ?

Flare contribution to TSI variation (I)

- ✓ TSI variations can be reproduced at about 90% by using the changing areas of bright (plages..) and dark (spot). Last 10% ? Change from cycle to cycle ?
- \checkmark The idea is:
 - Each (nano)flare, in addition to heat the corona, produce an emission at short wavelength (visible, near UV, IR) that has been neglected before.
 - Heating of the corona requires a continuum of flares (Parker scenario).
 - There is a natural modulation of the number (or the energy) of flares in phase with the solar cycle due to the heating of active region.
 - ✓ Let's quickly test this idea, neglecting many aspects.

Flare contribution to TSI variation (II)

 Heating of the corona requires a continuum of flares (Parker scenario).

The number of observed flares at energy W follows a power law:

$$N(W) = N_1 \left(\frac{W_1}{W}\right)^{\alpha}$$

where $\alpha \sim 1.8$. This is valid between respectively the low and upper energy cut-off W₁ and W₂ such that

$$\int_{W_1}^{W_2} WN(W)dW = W_{tot}$$

is the energy released by all flares per unit of time and surface

 $W_{1,QS} \sim W_{1,AR} = 10^{24} erg; W_{2,QS} \sim 10^{30} erg; W_{2,AR} \sim 10^{32} erg$ $W_{tot,qs} \sim 3.10^5 erg.cm^{-2}.s^{-1}; W_{tot,AR} \sim 10^7 erg.cm^{-2}.s^{-1}$ Aschwanden (2006)

Flare contribution to TSI variation (II)

- Each (nano)flare, produce an emission at short wavelength (visible, near UV, IR) that has been neglected before.
 - ✓ We need a relation: $dS \sim f(W) \sim f(E_{Goes})$

✓ Difficult !

... still in progress..

We will assume $dS \sim W_{tot,AR}$

"Flare contribution to TSI", M. Kretzschmar et al., SVECSE, Bozeman, June 2008

Flare contribution to TSI variation (II)

- modulation of the number (or energy) of flares.
- \checkmark With the active region we have a modulation of the energy:

$$f(W_{tot} * \sigma_{AR}(t))$$

- ✓ Two ways to estimate $\sigma_{AR}(t)$:
 - Use DSA (minimum estimate)
 - Use EIT/195 AR area from segmentation (Barra et al., in, preparation)

Flare contribution to TSI variation (III)

Results !

\checkmark This is about 10% of the 1W TSI variation with the cycle.

Conclusion

- Flares do impact the TSI, even small ones.
- Largest flares have a total radiative energy of about 10^{32} ergs.
- The emission at short (SXR, EUV) wavelengths during a flare constitutes a small part of the total radiated energy (Egoes ~0.01 Etot).
- In particular, visible emission seems (quasi) systematic and to constitute an important contribution to the TSI increase.
- Flares COULD contribute to the TSI variation, but probably not much.

Thanks to W. Schmutz and S. Mekaoui for providing high cadence irradiance data !: "Flare contribution to TSI", M. Kretzschmar et al., SVECSE, Bozeman, June 2008

Thank you !

Illustration of conditional average or superposed epoch analysis:

M9.9 flare (the 125th most important flare in the data set)

Backup slides

When does the TSI increase ?

✓ Conditional average for flare with $I_{0.1-.08nm} > 10^{-4.3}$ W/m²

✓ Peak flare reference time comes either from 0.1-0.8nm peak time or from the peak time of the derivative of the 0.04-0.1nm channel

Most of the TSI increase is before the maximum in 0.1-0.8nm, i.e. *during the impulsive phase.*

Conditional averaging: details (1/3)

Thus we can represent each time series as :

 $z_i(t) = x_i(t) + y_i(t)$

where $x_i(t)$ is the solar noise and $y_i(t)$ is the signal due to the flare, e.g. $y_i(t) = S_i \exp(-\frac{t-t_0}{\tau_i})\theta(t-t_0)$ In the following, we concentrate on the time of the peak of the flare t₀., such that $y_i(t_0)=S_i$, and $z=z(t_0)$, $x=x(t_0)$.

Our objective is that the signal becomes higher than the noise in the average time-series; it is then natural to average on the first *n* largest (as deduced from GOES classification) events, noted $<...>_n$:

$$\langle z \rangle_n = \sum_{i=1}^n z_i = \langle x \rangle_n + \langle S \rangle_n$$

Conditional averaging: details (2/3)

We make the reasonable assumption that the x_i are normally distributed with variance σ^2 , thus:

$$< x >_n \sim \sigma / \sqrt{n}$$

The ratio signal-over-noise of the averaged time-series is

$$\frac{\langle S \rangle_n}{\langle x \rangle_n} = \frac{1}{\sigma}\sqrt{n} \langle S \rangle_n$$

and depends thus on the distribution function of the S_i . If the average value decreases slower than $n^{-1/2}$, then the SNR ratio increase. For S_i , the reasonable assumption is to adopt the power law observed for flares at short wavelength:

$$f(S) \sim \frac{C}{S^{1+\mu}} = \frac{C}{S^{\alpha}} \qquad , \qquad \alpha \sim 1.8$$

Conditional averaging: details (3/3) Remember that we average the signal over the n *largest* flares,

i.e. $S_1 > S_2 > ... > S_n$ and $< S >_n = 1/n . \sum_{i=1,n} S_i$

The rank ordering statistics gives us the most probable values of the *p*-th variable S_p :

$$S_p^{mp} = \left[\frac{C(\mu N+1)}{\mu p+1}\right]^{\frac{1}{\mu}}$$

And thus,

$$S_n = (C(\mu N + 1))^{\frac{1}{\mu}} \frac{1}{n} \sum_{i=1}^n \left[\frac{1}{\mu i + 1} \right]^{\frac{1}{\mu}} \quad \text{or} \quad S_n \sim \frac{1}{n} \sum_{i=1}^n \frac{1}{i^{\frac{1}{\mu}}}$$

Manual Movie

M9.9 flare (the 125th most important flare in the data set)

M9.9 flare + the 125 next. Last one is a M5.8 flare

