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✤The response of TSI to 
flare.

✤How could flares 
contribute to the TSI 
variations ? 
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Flare signature in the TSI (I) 

 TSI signature observed for only 4 flares. This is because the 
TSI fluctuations (due to p-modes and convection) are about 
~70ppm=0.1W/m2 and hide the emission increase due to flare.

Woods et al., 2006
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Woods et al., 2006

Flare signature in the TSI (I) 



✓ What about the emission above 190 nm ?
✓ What is the spectral distribution of the radiative output ?
✓ What for others (less energetics) flares ?
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Woods et al., 2006

Flare signature in the TSI (I) 
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✓ We analyze the irradiance data of PMO, 
DIARAD, and SPM (VIRGO/SoHO) from 
1996 to 2007.

Data & Analysis
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✓ We analyze the irradiance data of PMO, 
DIARAD, and SPM (VIRGO/SoHO) from 
1996 to 2007.

X flare of 13/4/2001

Data & Analysis
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✓ We analyze the irradiance data of PMO, 
DIARAD, and SPM (VIRGO/SoHO) from 
1996 to 2007.

 To “see” the flares, we perform a conditional average or 
superposed epoch analysis:

1. Extract time series around each flare in the GOES db.
2. Sum them: if random noise, it goes to zero.

X flare of 13/4/2001

Data & Analysis



Averaged total radiative output of large flare

Conditional average of TSI for all flares such that 
I0.1-0.8 > 10-4.3 W/m2 (X and strong M ones,)
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The TSI response to flares  



Averaged VISIBLE radiative output of large flares
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The visible irradiance response to flare
Conditional average of SPM color channels for all flares such that 

IGOES > 10-4.3 W/m2 (X and strong M ones)



1ppm ~0.0013 W/m^2 ~1.1 1030 ergs/s

IGOES > X2

M9.9 < IGOES < X2

M3.1 < IGOES < M9.9.

C9.9 < IGOES < M3.1

C1 < IGOES < C9.9
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IGOES > X2

M9.9 < IGOES < X2

M3.1 < IGOES < M9.9.

C1 < IGOES < C9.9
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10-4.5 < IGOES < 10-4.
10-6. < IGOES < 10-5.

WL emission is ubiquitous 
during flare !!15 arcsec

1ppm in the irradiance ~ 20% contrast in 5 
arcsec2. This agrees with other observations 
(Hudson, 2006)

White Light Flares
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Relative Optical and TSI increase
IGOES > 10-3.7

10-4 < IGOES < 10-3.7

10-4.5 < IGOES < 10-4.
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Energetics
 Confirm the value of Woods et al.
(2006) for the effect of large flares on 
the TSI.

 Large uncertainty for smaller flares, 
due to timing and statistics.

Red: random timing

 Largest flares radiate about 1031-1032 ergs (in average, lower estimation)
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Preliminary Conclusion
✓ Flares do impact the TSI, even small ones.

✓ The emission at short (SXR, EUV) wavelengths during a flare 
constitutes a relatively small part of the total radiated energy 
(Egoes ~0.01 Etot for large flares).

✓ In particular, visible emission seems (quasi) systematic and 
to constitute an important contribution to the TSI increase.

✓ Largest flares have a total radiative energy of about 1032 ergs.

Could this imply a contribution of flares to long term 
(cycle) TSI variation ?

“Flare contribution to TSI”, M. Kretzschmar et al. , SVECSE,  Bozeman, June 2008



Flare contribution to TSI variation (I)
✓ TSI variations can be reproduced at about 90% by using the 

changing areas of bright (plages..) and dark (spot). Last 10% ? 
Change from cycle to cycle ?

✓ The idea is:  
‣ Each (nano)flare, in addition to heat the corona, produce an 

emission at short wavelength (visible, near UV,  IR) that has 
been neglected before.

‣ Heating of the corona requires a continuum of flares (Parker 
scenario).

‣ There is a natural modulation of the number (or the energy) 
of flares in phase with the solar cycle due to the heating of 
active region.

✓ Let’s quickly test this idea, neglecting many aspects.
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Flare contribution to TSI variation (II)
‣ Heating of the corona requires a continuum of flares (Parker 

scenario).
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The number of observed flares at energy W follows a power law:

N(W ) = N1(
W1

W
)α

where  ~ 1.8. This is valid between respectively the low and 
upper energy cut-off W1 and W2 such that 
∫ W2

W1

WN(W )dW = Wtot
is the energy released by all flares 
per unit of time and surface

W1,QS ~ W1,AR=1024erg;  W2,QS~1030erg;  W2,AR~1032erg
Wtot,qs~3.105 erg.cm-2.s-1;    Wtot,AR~107 erg.cm-2.s-1 Aschwanden (2006)



dS ∼ f(W ) ∼ f(EGoes)

Flare contribution to TSI variation (II)
‣ Each (nano)flare, produce an emission at short wavelength 

(visible, near UV,  IR) that has been neglected before. 
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✓ We need a relation: 
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10-4.5 < IGOES < 10-4.

✓Difficult !          ... still in progress..           

          We will assume  

Or

dS ∼Wtot,AR



f(Wtot ∗ σAR(t))

Flare contribution to TSI variation (II)
‣ modulation of the number (or energy) of flares.
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✓ With the active region we have a modulation of the energy: 

✓ Two ways to estimate                 : 
•Use DSA (minimum estimate)
•Use EIT/195 AR area from 
segmentation (Barra et al., in, 
preparation)

σAR(t)



Flare contribution to TSI variation (III)
‣  Results !
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Using Daily Sunspot Area Using Area from EIT195

✓ This is about 10% of the 1W TSI variation with the cycle.



Conclusion
✓ Flares do impact the TSI, even small ones.

✓ Largest flares have a total radiative energy of about 1032 ergs.

✓ The emission at short (SXR, EUV) wavelengths during a flare 
constitutes a small part of the total radiated energy (Egoes ~0.01 
Etot).

✓ In particular, visible emission seems (quasi) systematic and 
to constitute an important contribution to the TSI increase.

✓ Flares COULD contribute to the TSI variation, but probably not 
much.
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Thanks to W. Schmutz and S. Mekaoui for providing high cadence irradiance data !: 



Thank you !
Illustration of conditional average or superposed epoch analysis:



Backup slides



When does the TSI increase ?
 Conditional average for flare with I0.1-.08nm > 10-4.3 W/m2

 Peak flare reference time comes either from 0.1-0.8nm peak time 
or from the peak time of the derivative of the 0.04-0.1nm channel

From derivative of 0.04-0.1 From 0.1-0.8nm

 Most of the TSI increase is before the maximum in 0.1-0.8nm, i.e. 
during the impulsive phase. 



where        is the solar noise and        is the signal due 
to the flare, e.g.                                               . In the 
following, we concentrate on the time of the peak of the 
flare t0., such that yi(t0)=Si, and z=z(t0), x=x(t0).

xi(t) yi(t)

yi(t) = Si exp(− t− t0
τi

)θ(t− t0)

Thus we can represent each time series as :

zi(t) = xi(t) + yi(t)

Our objective is that the signal becomes higher than the noise 
in the average time-series; it is then natural to average on the 
first n largest (as deduced from GOES classification) events, 
noted <...>n:

< z >n=
n∑

i=1

zi =< x >n + < S >n

Conditional averaging: details (1/3)



We make the reasonable assumption that the xi are normally 
distributed with variance 2, thus:

< x >n∼ σ/
√

n

and depends thus on the distribution function of the Si. If the 
average value decreases slower than n-1/2, then the SNR ratio 
increase. For Si, the reasonable assumption is to adopt the 
power law observed for flares at short wavelength:

f(S) ∼ C

S1+µ
=

C

Sα
, α ∼ 1.8

The ratio signal-over-noise of the averaged time-series is
< S >n

< x >n
=

1
σ

√
n < S >n

Conditional averaging: details (2/3)



Remember that we average the signal over the n largest flares, 
i.e. S1>S2>...>Sn and <S>n=1/n.i=1,n Si  

The rank ordering statistics gives us the most probable values 
of the p-th variable Sp :

Conditional averaging: details (3/3)

Smp
p =

[
C(µN + 1)

µp + 1

] 1
µ

And thus,  
Sn = (C(µN + 1))

1
µ

1
n

n∑

i=1

[
1

µi + 1

] 1
µ

Sn ∼
1
n

n∑

i=1

1

i
1
µ

or



Manual Movie



M9.9 flare (the 125th most important flare in the data set)



M9.9 flare + the 10 next



M9.9 flare + the 20 next



M9.9 flare + the 30 next



M9.9 flare + the 40 next



M9.9 flare + the 50 next



M9.9 flare + the 60 next



M9.9 flare + the 70 next



M9.9 flare + the 80 next



M9.9 flare + the 90 next



M9.9 flare + the 110 next



M9.9 flare + the 125 next. Last one is a M5.8 flare


