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The observation of superconductivity in doped C60 has attracted
much attention1±3, as these materials represent an entirely new
class of superconductors. A maximum transition temperature (Tc)
of 40 K has been reported4 for electron-doped C60 crystals, while a
Tc of 52 K has been seen5 in hole-doped crystals; only the copper
oxide superconductors have higher transition temperatures. The
results for C60 raise the intriguing questions of whether conven-
tional electron±phonon coupling alone1 can produce such high
transition temperatures, and whether even higher transition
temperatures might be observed in other fullerenes6±8. There
have, however, been no con®rmed reports of superconductivity

in other fullerenes, though it has recently been observed in carbon
nanotubes9. Here we report the observation of superconductivity
in single crystals of electric-®eld-doped C70. The maximum
transition temperature of about 7 K is achieved when the
sample is doped to approximately four electrons per C70 molecule,
which corresponds to a half-®lled conduction band. We anticipate
superconductivity in smaller fullerenes at temperatures even
higher than in C60 if the right charge density can be induced.

Metallic behaviour is expected for KC70 and K4C70 owing to the
half-®lling of the lowest unoccupied molecular orbital bands in K-
intercalated C70. An initial transport study on K-intercalated C70

found a maximum conductivity of ,2 S cm-1 (ref. 10). Theory and
experiment showed that K4C70 exhibits a larger conductivity
because of its higher density of states11±13. Pure C70 and alkali-
metal-doped C70 show non-zero resistance down to 1.8 K. The
absence of superconductivity in these experiments is not well
understood, and might be related to disorder and structural defects
in the K4C70 thin ®lms. A weak electron±phonon interaction11,14 and
a reduced density of states at the Fermi level15 have also been invoked
as reasons for the apparent lack of superconductivity. We note,
however, that most experiments have been performed on polycrys-
talline material, and phase-pure alkali-doped C70 analogues of A3C60

have not been reported. In addition, various crystallographic
structures of C70 have been observed16. Here we have chosen a
different approach to induce electric charge in C70 crystals. We have
recently demonstrated that the electrical properties of organic
materials can be investigated over a wide range of charge density
using ®eld-effect doping, without inducing additional
disorder5,17±19, leading to gate-induced superconductivity in a vari-
ety of molecular organic crystals5,17,18. This method therefore seems
to be well suited to our investigation of the reasons for the absence
of superconductivity in the higher fullerenesÐis it related to
intrinsic properties, or to dif®culties in chemical doping? Here we
apply this technique to investigate the possibility of superconduc-
tivity in high-quality C70 single crystals.

We grew single crystals of C70 (smaller than 1 mm3) from the
vapour phase in a stream of hydrogen; the experimental conditions
were similar to those used to grow C60 (ref. 5). The crystals were
annealed in a xenon atmosphere, but we detected no incorporation
of the inert gas into the crystals. We performed an X-ray structural
analysis of the C70 single crystals, which showed them to be
hexagonal closed packed (h.c.p.) C70, with lattice parameters a =
10.602(9) AÊ and c = 17.263(13) AÊ . Previous studies of hexagonal
C70 gave lattice parameters of a = 10.104 AÊ and c = 18.584 AÊ ,
with a wide mosaic spread of the order of a few degrees20Ð
furthermore, these crystals showed diffuse rods typical of stacking
faults21. In contrast, our crystals show a much narrower mosaic of
the order of 0.48. In addition, the c/a ratio for our crystals is close to
the ideal value of 1.63 for sphere packing, in contrast to the reported
value of 1.84. To ®rst order, it is possible to approximate the
ellipsoidal C70 molecule by a hollow sphere with radius r =
3.78 AÊ , and we obtained a residual of R = 0.065 for 118 independent
re¯ections measured. As stacking faults were expected to be present,
we looked for diffuse rods of intensity. Instead, we found well
developed superstructure re¯ections with a mosaic spread of the
order of 0.48 consistent with 6H polytypes, leading to a tripling of
the c axis (3c = 51.79 AÊ ). Different 6H stacking sequences are
expected, producing twinning at room temperature. On average,
®ve layers are stacked coherently, with the sixth in either the h.c.p. or
the cubic close packed (c.c.p.) position. Low-temperature X-ray
diffraction revealed a further lowering of symmetry, but the crystals
clearly undergo multiple twinning upon cooling. This lowering of
the symmetry is indicative of a transition to a phase in which the C70

molecules no longer rotate freely. However, we do not expect that
the orientational order of the molecules will be complete, similar to
the phase transition observed for C60 upon cooling22. Further
structural studies at low temperature are under way.
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We prepared ®eld-effect transistors (FETs) on growth surfaces by
the deposition of source and drain electrodes made of gold, an Al2O3

gate insulator, and a gold gate electrode (see Fig. 1 inset). The
transistors showed n-channel activity, with room-temperature
mobilities in the range 1±1.8 cm2 V-1 s-1. Similar mobilities have
been reported for C60 single-crystal transistors17. We observed no
p-channel activity, a fact that we ascribe to signi®cantly stronger
trapping of holes than of electrons. Such behaviour is often
observed in organic FETs. We have studied the transport proper-
ties of C70 p-channel FETs down to 1.7 K in magnetic ®elds up to
9 T. The experimental ®eld-effect-doping range is limited by the
electrical breakdown of the gate insulator.

By applying a strong electric ®eld to the gate, it is possible to
induce a very high carrier concentration into the topmost layer of
molecules in the organic crystal. Figure 1 shows the channel
resistance as a function of temperature for a C70 FET. The electron
density is approximately four electrons per C70 molecule, assuming
that only the topmost layer takes part in the conduction5,17±19. The
resistance starts to drop at 7 K, reaches its half-point at 6 K, and
indicates a transition to the superconducting state. An external
magnetic ®eld, applied perpendicular to the FET channel, sup-
presses the transition as in C60 crystals5,17. From the estimated zero-
temperature upper critical ®eld, we calculate a coherence length of
40 AÊ for C70, which is similar to values obtained for bulk-doped as
well as ®eld-effect-doped C60 (refs 2, 3, 17). The dependence of the
transition temperature on the electron density is shown in Fig. 2.
Superconductivity (above 1.7 K) is observed for more than three
electrons per molecule. A maximum transition temperature of 7 K
is observed for four electrons per C70 molecule. This density
corresponds to half-®lling of the conduction band12. We note that
the highest conductivity of alkali-metal-doped C70 ®lms has also
been observed for this doping level20. However, band structure
calculations24 and photoemission data25 have been interpreted as
suggesting that the conduction band of C70 might take only six
electrons. This would then raise the question of why superconduc-
tivity in C60 occurs around half-®lling, and in C70 around two-thirds
®lling. Differences might arise from the cubic and hexagonal crystal
structure of C60 and C70, respectively. Further detailed theoretical
and experimental studies into the electronic structure of C70 seem to
be appropriate.

It is interesting to compare the transition temperatures of ®eld-
effect-doped C60 and C70. In the larger molecule Tc is ,7 K, whereas
it is ,11 K in the smaller one. This reduction is in line with the

theoretical expectations of a reduced intra-molecule electron±
phonon coupling strength6. But other effects also need to be
consideredÐin particular, the electronic density of states and the
effective Coulomb interaction strength.

Reports of superconductivity in members of the fullerene family
other than C60 have not so far been con®rmed23. The present results
now indicate the strong possibility that other fullerenes might also
become superconducting. This would be another way towards
superconductivity at much higher temperatures: the electron±
phonon coupling has been calculated to become stronger with
decreasing numbers of p-electrons6 and with increasing curvature
of the molecules26,27. Thus it will be interesting to study the smaller
fullerenes7,8, and ®eld-effect doping would seem to be the method of
choice to introduce holes and electrons. The present results seem
also to indicate the importance of reducing disorder in the crystals
or in ®lms. M
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Axial volcano, which is located near the intersection of the Juan de
Fuca ridge and the Cobb±Eickelberg seamount chain beneath the
northeast Paci®c Ocean, is a locus of volcanic activity thought to
be associated with the Cobb hotspot1. The volcano rises
700 metres above the ridge, has substantial rift zones extending
about 50 kilometres to the north and south, and has erupted as
recently as 1998 (ref. 2). Here we present seismological data that
constrain the three-dimensional velocity structure beneath the
volcano. We image a large low-velocity zone in the crust, consist-
ing of a shallow magma chamber and a more diffuse reservoir in
the lower crust, and estimate the total magma volume in the
system to be between 5 and 21 km3. This volume is two orders of
magnitude larger than the amount of melt emplaced during the
most recent eruption3,4 (0.1±0.2 km3). We therefore infer that such
volcanic events remove only a small portion of the reservoir that
they tap, which must accordingly be long-lived compared to the
eruption cycle. On the basis of magma ¯ux estimates, we estimate
the crustal residence time of melt in the volcanic system to be a
few hundred to a few thousand years.

Axial volcano is formed by excess magmatism associated with
mantle melting at the Cobb hotspot and the Juan de Fuca ridge5.
Shoaling bathymetry, inferred crustal thickening6, frequent seismic
swarms7,8 and deformation events3,4 are consistent with a robust
magma supply system. Lateral dyke injection, observed during a
1998 eruption9, originated from a source under the caldera and
carried magma up to 50 km along the volcano's rift zones, which are
substantial constructional features. Such events suggest that magma
supply is strongly focused beneath the volcano. The existence of the
3 ´ 8 km caldera, its 3 m subsidence during the 1998 eruption10, and
evidence for low-density rock beneath the summit11, suggest a large

magma body a few kilometres beneath the volcano. What has not
been understood is how much melt exists, how long it spends in the
crust, and how eruptions along the rifts and adjacent ridge segments
are related to the magma reservoir. These questions have remained
unanswered, not just at Axial volcano, but at basaltic shield
volcanoes worldwide.

The compressional-velocity image of the volcano presented here
is based on data collected during a 1999 active-source seismic
experiment (Fig. 1). 5,025 shots from the airgun array (20 guns
totalling 142 litres) of the RV Maurice Ewing were recorded on six
ocean-bottom seismometers12 deployed on the volcano's ¯anks.
Water wave travel times and global positioning system (GPS)-
determined shot locations were used to precisely locate the seismo-
meters on the sea ¯oor (error , 20 m) and to determine clock drifts
(error , 0.02 s). Travel times from 16,400 Pg phases, which turn
within the crust, are used in this study.

To characterize the regional structure, a bathymetry-draped one-
dimensional (1D) velocity model was assembled from previous
studies13,14 on the Juan de Fuca ridge. Predicted travel-time errors
through this model were inverted to determine the best-®t 1D
velocity structure (see Methods). Seismic ray-paths crossing the
caldera were excluded from the inversion, so the resulting model
represents average crustal structure away from the volcano. In the
®nal 1D model (not shown), velocity contours 4±6 km s-1 are up to
1 km deeper than on other parts of the Juan de Fuca13,14 ridge. The
additional 0.5±1.0 km of volcanic extrusives implied by these
depressed velocities is not surprising, considering the shallow
bathymetry and crustal thickening6.

Seismic travel-time prediction was accomplished through a fast
ray shooting method performed on a three-dimensional tetrahedral
velocity grid. Predicted travel times through the 1D model deviate
from real data with an r.m.s. error of 0.181 s. Much of this mis®t is
contributed by a small number of caldera-crossing rays which are
systematically delayed by up to 0.5 s (Fig. 2). A three-dimensional
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depth, surrounding sea ¯oor is at ,2,800 m depth, contour interval is 200 m. Thin black
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This manuscript was, in part, the subject of an independent
investigation1 conducted at the behest of Bell Laboratories, Lucent
Technologies. The independent committee reviewed concerns
related to the validity of data associated with the device measure-
ments described in the paper.

J.H.S.: As a result of the committee’s findings1, I am issuing a
retraction of the paper. I note nevertheless that this paper may also
contain some legitimate ideas and contributions.

M.D., X.Z.Z., E.A. and C.D.C.: In the light of the recent findings
of the investigation1 committee chaired by Professor Beasley, we
would like to warn readers about the validity of the field-effect
doping data presented in this paper and issue a retraction of this
article. Our laboratory specializes in the synthesis, by molecular
beam epitaxy, of copper oxide thin films. In May 2001, we initiated a
collaboration with J.H.S., in which our role was limited to the
synthesis of a thin-film sample of CaCuO2. We can certify the
quality (composition and structure) of the sample, and we are ready
to prepare such samples for other serious scientific teams who want
to try to reproduce these results.

M.L. and F.C.B.: We comment here as researchers at Wintici SA, a
technology company. The synthesis of the CaCuO2 sample reported
in the paper was undertaken in collaboration with researchers from
ESPCI, and we can vouch for its quality. But in the light of the
committee’s findings1, we wish to issue a retraction of the paper. We
note nevertheless that this paper may also contain some legitimate
ideas and contributions. A

1. Beasley, M. R., Datta, S., Kogelnik, H., Kroemer, H. & Monroe, D. Report of the Investigation

Committee on the Possibility of Scientific Misconduct in the Work of Hendrik Schön and Coauthors.

khttp://publish.aps.org/reports/l (doi:10.1103/aps.reports.lucent) (Lucent Technologies/American
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