Alkali-metal isotope effect in Rb₃C₆₀ B. Burk^a, Vincent H. Crespi^a, M.S. Fuhrer^a, A. Zettl^a, and Marvin L. Cohen^a ^aDepartment of Physics, University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 U.S.A. The rubidium isotope effect has been measured in superconducting crystals of Rb_3C_{60} . With $T_c \sim M^{-\alpha}$, we find $\alpha_{Rb} = -0.028 \pm 0.036$. This result puts constraints on the superconducting mechanism in Rb_3C_{60} . #### 1. EXPERIMENTS AND RESULTS Single crystals of C₆₀ (produced from ¹²C) were intercalated with rubidium following a standard procedure [1]. Samples were intercalated with either natural abundance rubidium ^{na}Rb (72.2% ⁸⁵Rb, 27.8% ⁸⁷Rb), isotopically enriched ⁸⁷Rb (0.8% ⁸⁵Rb, 99.2% ⁸⁷Rb), or isotopically enriched ⁸⁵Rb (99.8% ⁸⁵Rb, 0.2% ⁸⁷Rb). All rubidium used was first extracted from RbCl using a calcium reduction technique. The superconducting transition temperature T_C for the samples was determined using dc 4-probe resistivity measurements. T_c was defined as the peak in the temperature derivative of the resistance, dR/dT; this was reproducible to within 5mK for a given sample. The actual transition width (defined as the separation between the maximum and minimum in the second derivative) was between 140mK and 180mK for all samples. Fig. 1 shows dR/dT for $^{\rm na}$ Rb, 87 Rb, and 85 Rb samples. The solid lines are cubic spline fits to the data. The maximum of the fit determines $^{\rm T}_{\rm C}$ (parabolic and gaussian fits yield essentially equivalent results). We find $^{\rm T}_{\rm C}$ ($^{\rm na}$ Rb) = 30.822 K, $^{\rm T}_{\rm C}$ ($^{\rm 87}$ Rb) = 30.836 K, and $^{\rm T}_{\rm C}$ ($^{\rm 85}$ Rb) = 30.816 K. #### 2. ANALYSIS In Fig. 2 we plot T_C versus average rubidium mass. Within experimental error, there is no rubidium isotope effect on T_C in Rb₃C₆₀. The solid curve is a fit to $T_C \propto M^{-\alpha}$, with $\alpha = -0.028$. Figure 1. Derivative with respect to temperature of normalized resistance near T_c for $^{85}Rb_3C_{60}$, $^{87}Rb_3C_{60}$ and $^{na}Rb_3C_{60}$. Curves are cubic spline fits to the data. Position of curve fit maximum determines T_c . For comparison, in Fig. 2 we show (dashed line) the result for the BCS maximum value of $\alpha_{Rb} = 0.5$ normalized to the $^{87}\text{Rb}_3\text{C}_{60}$ data point. Our final result is $\alpha_{Rb} = -0.028 \pm 0.036$. This value is consistent with the finding of Ebbesen et al. [2] that $\alpha_{Rb} < 0.2$. However, the improved error bars in our experiment place stringent limits on the possible contributions of alkali-optic phonons to the superconductivity. A model of superconductivity in Rb₃C₆₀ incorporating both on-ball carbon phonons and Rb- C_{60} optic modes would predict a direct rubidium isotope effect due to isotopic shift in phonon frequency. Our experiment places limits on the relative contributions of rubidium modes within such a model. Using as an upper bound $\alpha_{Rb} < 0.044$ (two standard deviations above the measured value), detailed calculations [3] yield for the fractional contribution to the electron-phonon coupling constant $\lambda_{Rb}/\lambda \le \sim 0.3$, with the ratio decreasing with increasing akali mode frequency. Although the contribution of the alkali modes to T_c is at best small, the contribution of a low frequency alkali mode to λ can be substantial. Figure 2. Plot of T_c versus average rubidium mass in Rb_3C_{60} . Solid line is fit of the data to $T_c{\sim}M_{Rb}^{0.028}$. Dashed line shows $T_c{\sim}M_{Rb}^{-0.5}$ with proportionality constant chosen so that the line passes through the $^{87}Rb_3C_{60}$ data point. ## **ACKNOWLEDGEMENTS** This work was supported by NSF grants DMR-9017254 and DMR-9120269 and the Department of Energy under contract DE-AC03-76SF00098. ### **REFERENCES** - X. -D. Xiang, J. G. Hou, V. H. Crespi, A. Zettl, and M. L. Cohen, Nature 361, 54 (1993). - T. W. Ebbesen, J. S. Tsai, K. Tanigaki, H. Hiura, Y. Shimakawa, Y. Kubo, I. Hirosawa, and J. Mizuki, Physica C 203, 163 (1993). - 3. B. Burk, V. H. Crespi, A. Zettl, and M. L. Cohen, (submitted to Phys. Rev. Lett.).