Reconnection tames the turbulent magnetic fields around Earth

Magnetic reconnection, one of the most important processes in the plasma-filled space around Earth, dissipates magnetic energy and propels charged particles, both of which contribute to a dynamic space weather system that scientists want to understand and someday predict. (NASA’s Goddard Space Flight Center/Joy Ng video)

The discovery will help scientists understand the role magnetic reconnection plays elsewhere in space, for example, in heating the inexplicably hot solar corona — the sun’s outer atmosphere — and accelerating the supersonic solar wind. NASA’s upcoming Parker Solar Probe mission will be launched directly toward the sun this summer to investigate exactly those phenomena, armed with this new understanding of magnetic reconnection near Earth.

And since magnetic reconnection occurs throughout the universe, what scientists learn about it around our planet — which is easier to examine — can be applied to other processes farther away.

“MMS discovered electron magnetic reconnection, a new process much different from the standard magnetic reconnection that happens in calmer areas around Earth,” said Tai Phan, a senior fellow in the Space Sciences Laboratory at the University of California, Berkeley. “This finding helps scientists understand how turbulent magnetic fields dissipate energy throughout the cosmos.”

Phan is lead author of a paper describing the findings that will be published this week in the journal Nature.

The complete article